1982-03-15 ISO TC97/SC5/WG3 - CONCEPTUAL SCHEMA E- pn 2

APPENDIX E. THE BINARY RELATIONSHIP APPROACHES.

==

 E.1._EMPHASIS_OF_THE_APPROACHES.

The Binary Relationship approaches to conceptual schema definition have their

origin in the work of authors such as Abrial in the early seventies, and

Bracchi and Senko in the mid seventies. During this period a few implementa-

tions of binary relationship systems were also attempted. More recently fresh

implementations of binary relationship systems have sought to demonstrate that

application programming and end user interfaces to data base management systems

can be realized at a level close to the conceptual schema.

In this chapter, we present a synthesis of the Binary Relationship approaches,

which is not the product of any single author in particular. Other approaches

to the binary model exist in the literature. What all these approaches have in

common, is a representation of information "elements" by means of instances of

binary associations, i.e. sentences in which only two terms play a role.

A common feature of Binary Relationship approaches is the use of graphic no-

tation to illustrate parts of the conceptual schema and the information base.

An information base is an attempt to describe a part of the universe of dis-

course 1 . From a modelling viewpoint, this universe of discourse presents

itself at each moment of time as a set of entity and binary association oc-

currences 2 . The population and semantics of the universe of discourse must

be modelled in a way that agrees with the existing propositions about those

occurrences.

Remark: The notions of population, occurrence and type above and be-

 low are here applied to concepts of object and binary asso-

 ciation, as done commonly by proponents of this method such

 as Abrial 3 , Bracchi 4 , Senko 5 , as well as Durchholz

 6 and several others.

The modelling process occurs in two phases: On one side one has the universe of

discourse, on the other the information base and conceptual schema.

The modeller, or analyst, performs three tasks: he names (refers to) or es-

tablishes naming conventions for the entity which he observes in the universe

of discourse, he classifies it (which is also a naming action of a kind) and

prepares a conceptual schema that will describe this classification as well as

allows populating it with a name of or reference to the observed entity.

In the Binary Relationship approaches, it is taken as a starting point that the

conceptual schema's function is mainly to introduce classification and order

in the description of the universe of discourse, not just be a "flat"

exhaustive description on the occurrence level. The modelling of the universe

of discourse on this occurrence level may be considered sufficient from a

theoretical point of view by certain other approaches (since it can conceivably

achieve any desired degree of completeness). That kind of modelling method,

however, lacks many pragmatical and practically useful properties which, for

instance, are a consequence of the type concept.

The Binary Relationship approaches, as presented here, fully implement the

distinction between lexical and non-lexical objects as outlined in section 2.1

of chapter 2 as a means to resolve some of the confusion between things and the

names of things that occur in so many information descriptions and information

exchanges. At the same time it provides a systematic treatment of such natural

concepts like type.

These Binary Relationship approaches do not themselves treat the language in

which a universe of discourse is described in any other way than to emphasize

its existence and necessity. It is implicitly assumed as a postulate that there

is semantical equivalence in the sense of chapter 3, section 3.4, between:

 * the propositions about the universe of discourse,

 * the sentences describing them in the conceptual schema and

 information base (not necessarily in a one-to-one

 correspondence).

Considering the objectives for a conceptual schema, cited in section 1.9 of

chapter 1, the following remarks could be made about these approaches:

 1. "To_provide_a_common_basis_for_understanding_the_general_be-

 haviour_of_the_universe_of_discourse."

 The Binary Relationship approaches usually provide a formal

 language to completely describe the conceptual schema, and a

 graphic formalism or notation covering major aspects of the

 conceptual schema. The use of the basic concepts - entity,

 entity-name, binary relationship and constraint - makes it

 possible to completely describe the dynamic rules and con-

 sstraints of the conceptual schema and information base, as

 well as the static rules and constraints (This characteris-

 tic is also available in the IPL approaches). The fundamen-

 tal distinction between things and their names is a great

 help in the ease of understanding and teaching 5, 7 . The

 challenging part in the teaching and understanding is in the

 area of constraints.

 2. "To_define_the_allowed_evolution_and_manipulation_of_the_in-

 formation_about_the_universe_of_discourse."

 In the Binary Relationship approaches the basic concepts are

 atomic. As a consequence any given constraint is explicitly

 formulated. Therefore changes in the universe of discourse

 can be absorbed by just adding or deleting, but not

 changing, the types of binary relationships, entities or

 entity names, or by just changing constraints. This results

 in a more relative stability as opposed to approaches where

 some constraints are "packed" into the "basic" concepts.

 3. "To_provide_a_basis_for_interpretation_of_external_and_inter-

 nal_syntactical_forms_which_represent_the_information_about_

 the_universe_of_discourse."

 To serve this role it is needed that a conceptual schema

 contains the deepest structure of the problem description

 in semantically irreducible elements. The distinction be-

 tween things and their names present in these Binary Rela-

 tionship approaches provides a deep structural aspect while

 the binary relationships and the subtyping capability pro-

 vide the semantical irreducibility.

 4. "To_provide_a_basis_of_mappings_between_and_among_external_and

 internal_schemata."

 The maximum degree of stability for the purpose meant here

 is reached with semantically irreducible constructs and con-

 structs free of additional constraints. This is the case in

 the Binary Relationship approaches.

 E.2._PRIMITIVE_CONCEPTS_OF_THE_APPROACHES.

When recognizing the distinction between lexical and non-lexical objects and

their disparate functions, the concept of type is needed. Indeed, one or

several lexical objects will specify one or several non-lexical objects

corresponding to entities in the universe of discourse. Let us take a specifi-

cation, for example:

 'Rita` (lexical object)

We now want to express that we talk about a certain entity in the universe of

discourse corresponding to the string 'Rita`. To denote entities such as in

this case a girl-entity, we use the notation <girl>. So 'Rita` refers to a

<girl> entity. Suppose this <girl> is referred to in our language by the word

'girl`. An obvious construct would be then to talk of:

 'girl` called 'Rita`

whereby 'girl` is introduced as a lexical object (or name) for the entity-type

of <girl>. This lexical object 'girl` is therefore a lexical object at the con-

ceptual schema level.

 14

 Figure E.1. Classifying and naming the <girl Rita>.

The non-lexical object named by 'girl` is a class of entities <girl>s in the

universe of discourse.

The same example we can now elaborate a little further and establish also a lex-

ical object or name 'girlname` for the class of all entities in the universe of

discourse that are names of <girl>s. So 'Rita` is an occurrence of 'girlname`.

Note that again 'girlname` is a lexical object at the conceptual schema level.

 16

 Figure E.2. Typing and naming in the universe of discourse.

Observe also that, when described and entered in the conceptual schema, this

step will precisely model the "naming"-arrow in figure E.2. We see that 'girl-

name` denotes another kind of type of lexical objects. A link between the two

types above, one lexical and one non-lexical, is already visible in the word

"called". In the Binary Relationship approaches discussed here this type of

link is named a bridge (Nijssen 8).

It must be mentioned already here that these Binary Relationship approaches do

not prohibit synonyms or homonyms to be used as names or references. However,

for the sake of determinism, it is required that every entity-image or object

occurrence in the conceptual schema and information base possesses, at all

times, at least one way of unambiguously referring to it.

Summarizing, we talk of

 'girlname`

as specifying a type of lexical objects of which 'Rita` is an individual oc-

currence, and of

 'girl`

as referring to a type of non-lexical objects of which

 'girl` called 'Rita`

is an individual occurrence.

Formally, we shall have thus:

 1. - Linguistic_objects:

 1.1. lexical_objects, corresponding to individual "ut-

 terable" entities. Example: 'Jones`, 'Rita`, 'girl`.

 1.2. Non-lexical_objects, corresponding to "non-utter-

 able" entities. Non-lexical objects specify entities

 by using lexical objects (in a manner elaborated

 below). Example: the 'person` called 'Jones`, the

 'girl` called 'Rita`. Note, that 'person` and 'girl`

 are used here as references to types rather than to

 instances, as in 1.1.

 2. - Binary_relationship_instances_(between_two_linguistic_objects):

 2.1. Idea, between two non-lexical objects.

 2.2. Bridge, between a lexical and a non-lexical object.

 2.3. Phrase, between two lexical objects.

 3. - Linguistic_object_types:

 3.1. Lexical object types (LOT s).

 3.2. Non-lexical object types (NOLOT s).

This classification into types is an essential part of the modelling process

(Falkenberg 7). It depends usually and mostly on the syntax and semantics of

the translation of the propositions in the universe of discourse into the lan-

guage of the information system. It also depends on the modeller's awareness of

the shortcomings, abstractions, interpretations, and naming conventions intro-

duced while making this translation.

Further corresponding to these types of linguistic objects there are types of

ideas, bridges and phrases:

 4. - Binary_relationship_types:

 4.1. Idea types, conveying the "real" information be-

 tween non-lexical objects.

 4.2. Bridge types, linking the naming lexical-objects

 to the named non-lexical objects.

 4.3. Phrase types, carrying relations between lexical

 objects only.

And, also having types of linguistic objects, we shall want to "subclassify"

them into subtypes, depending on the distinction between shared and non-shared

binary relationship types on linguistic object types on one hand, and pure "con-

ceptual" subclassification of the (future) populations of those linguistic ob-

ject types on the other hand.

For example, we might consider the subtypes 'man`, 'woman`, 'employee` of the

type 'person` mentioned above. Almost always a subtype is introduced because of

the existence of particular distinguishing ideas on the "supertype". In this

example, 'man` might be characterized by a military record, 'woman` by natural

children, 'employee` by a firm, and so on. Hierarchies of subtypes are of

course perfectly possible and permitted in the Binary Relationship approaches.

Only subtyping between a lexical and a non-lexical object type is not allowed

for obvious reasons. It is important to note that subtypes need not be dis-

joint.

So we have:

 5. - Subtypes:

 5.1. Non-lexical subtypes, i.e. which induce subsets of

 non-lexical object types.

 5.2. Lexical subtypes, i.e. which induce subsets of

 lexical object types.

Finally, realizing some propositions of the universe of discourse, or more pre-

cisely, some necessary propositions, are about propositions themselves and

therefore translated into predicates about linguistic objects and binary rela-

tionship instances, we need to express these in static and dynamic constraints

(at the type level). Since the existence of those propositions has probably

influenced the shape of the universe of discourse the constraints will also

influence the modelling process.

So we end here with:

 6. - Constraints, both static and dynamic.

All operators, from the vantage point of the conceptual schema, work on the

"occurrence" or "instance" level. There are actually few of them.

A very important axiom, which is introduced to make these operators generally

meaningful, is the following:

 In every state of the information base, every linguistic

 object instance must be an occurrence of some linguistic ob-

 ject type; every binary relationship instance is an occur-

 rence of some binary relationship type; and most important,

 every linguistic object possesses a way of uniquely re-

 ferring to it by means of one or more lexical objects.

The operators defined for this example of the Binary Relationship approaches

are:

 7. - Operators:

 7.1. list (... a binary relationship instance),

 7.2. add (... a binary relationship instance),

 7.3. delete (... a binary relationship instance),

 7.4. qualify (... an linguistic object as belonging to

 a subtype),

 7.5. unqualify (... an linguistic object from out of a

 subtype),

 7.6. equate (... identify two different linguistic

 objects as meaning or referring to one and the same

 thing).

 7.7. together_do (... perform a sequence of operators

 but decide on its permissibility on the basis of the

 sequence as a whole).

The semantics of these elementary operators are directly interpretable in terms

of chapter 2 in the cases (7.1) - retrieval, (7.2) - insertion, (7.3) - dele-

tion, and (7.7) - permissible action. The same or similar operators exist in

most approaches. The operators (7.4) - qualify, (7.5) - unqualify, and (7.6) -

equate, however, are typical for this example of the Binary Relationship ap-

proaches. The operators "qualify" and "unqualify" derive from the notion of

subtypes:

 qualify takes a reference to a linguistic object and trans-

 forms it to a reference to a linguistic object in

 one of the subtypes of the linguistic object type

 containing the linguistic object.

 For example, "qualify the manufacturer 'Ford` as

 operating-manufacturer".

 unqualify does the opposite; it removes the ability to use

 the reference for linguistic objects of the sub-

 type concerned.

 For example, "unqualify the manufacturer 'PSC` as

 operating-manufacturer".

The operator "equate" is particular since it is a consequence of how these

Binary Relationship approaches implement the distinction between names and

things:

 equate establishes two different terms as being refer-

 ences to the same entity in the universe of dis-

 course, thus needing "non-lexical" identification

 while retaining all existing naming conventions

 for it.

 For example, "equate (the manufacturer called Ford,

 the manufacturer of the car-model Mustang)".

 E.3._GRAMMAR_AND_SEMANTICS.

 E.3.1._THE_LANGUAGE_AND_ITS_RELATION_TO_THE_UNIVERSE_OF_DISCOURSE.

Referring to chapter 3, section 3.3, we may repeat that certain general con-

cepts are primitive notions that characterize the grammar of any language. They

are:

 TERM

 A linguistic object that refers to an entity;

 SENTENCE

 A linguistic object which expresses a proposition;

 FUNCTOR

 A linguistic object that refers to a function on other lin-

 guistic objects taking as arguments (input) a list of lin-

 guistic objects (terms, sentences, functors) and yielding as

 a value (output) a single, uniquely determined linguistic

 object (term, sentence, functor).

The functors used for the Binary Relationship approaches are the usual ones of

predicate, operator, quantifier, etc, and will be made explicit along the way.

It is possible to give an interpretation for these concepts in the language

used for conceptual schema definition in these Binary Relationship approaches

as follows:

 TERMS:

 a) ELEMENTARY TERMS: Linguistic Object Type Names,

 Binary Relationship Type Names,

 Role Names,

 Individual Names.

 Example: 'Rita`, 'girl`;

 b) DESCRIPTIVE TERMS: References linking one or more

 lexical objects (elementary

 terms) to a non-lexical object.

 Example: 'The company employing Rita`.

 SENTENCES:

 a) ELEMENTARY SENTENCES: Declarations of Linguistic Ob-

 ject Types, Binary Relation-

 ship Types.

 b) FUNCTORIAL SENTENCES: Obtained through application

 of functors (mainly predi-

 cates) to TERMS and ELEMENTARY

 SENTENCES and used for con-

 straint definition.

 Examples follow in section E.6.

Elementary sentences (declarations) are built up mainly with the primitive

predicate "is-a" in some equivalent form (namely the "add" of a "bridge" in-

stance). Note that this predicate connects a term from the conceptual schema

level with one from the meta-conceptual level, containing such names as 'OBJECT

TYPE` and 'IDEA TYPE`. Other primitive predicates in the model are "is-a-subset-

of", with the obvious meaning, and "has-roles" and "connects-with" which are

used in declaring roles for idea, bridge, and phrase types below.

In a practical application, one would probably find also useful certain primi-

tive or (semi-primitive) predefined predicates specifying a logical represen-

tation for lexical object types, but we shall not consider those here to avoid

cluttering up the real issues.

The example language of section E.6 is to be considered ad hoc for the purposes

of this chapter. No implied suggestion for any kind of standard is implied.

The grammar of the language used for the example is based on the following

principle:

 Since the grammar describes conceptual schemata, it can

 itself be considered as a language in which we model a par-

 ticular universe of discourse, namely the universe of dis-

 course of the conceptual schemata of the Binary Relationship

 approaches. Therefore a "declaration" of a lexical object

 type, for instance, is nothing but the "add" of a bridge

 connecting the meta-schema-LOT 'LEXICAL-OBJECT-TYPE-NAME` or

 'LOTNAME` with the meta-schema NOLOT 'LEXICAL-OBJECT-TYPE`

 or 'LOT`.

 Example:

 add NOLOT called 'GARAGE'

 declares a NOLOT with NOLOTNAME 'GARAGE', by inserting this

 piece of information as a binary (bridge-) relationship

 instance in the conceptual schema.

 E.3.2._FORMAL_SYNTAX.

The formal syntax of the language used in the example (section E.6) is given

below, using the syntax notation of appendix C:

(R1) conceptual-schema = " begin "

 "CONCEPTUAL-SCHEMA called" schema-name ";"

 nolot-declaration {nolot-declaration}

 lot-declaration {lot-declaration}

 {subtype-declaration}

 {idea-declaration}

 bridge-declaration {bridge-declaration}

 {phrase-declaration}

 {constraint-declaration}

 " end ".

(R2) nolot-declaration = "NOLOT called" (nolot-name] nolot-name-list).

(R3) lot-declaration = "LOT called" (lotname] lotname-list).

(R4) subtype declaration = nolot-subtype] lot-subtype.

(R5) nolot-subtype = "NOLOT called"

 (nolot-name-1] nolot-name-1-list)

 " is subtype-of NOLOT called" nolot-name-2 ";".

(R6) lot-subtype = "LOT called" (lot-name-1] lotname-1-list)

 " is subtype-of LOT called" lot-name-2 ";".

(R7) idea-declaration = "IDEA (with-first ROLE (called" role-name-1

 " and on NOLOT called" nolot-name-1 ")"

 " and with-second ROLE (called" role-name-2

 " and on NOLOT called" nolot-name-2 "))"

 " is called" idea-name ";".

(R8) bridge-declaration = "BRIDGE (with-first ROLE (called" role-name-1

 " and on NOLOT called" nolot-name ")"

 " and with-second ROLE (called" role-name-2

 " and on LOT called" lot-name "))"

 " is called" bridge-name ";".

(R9) phrase-declaration = "PHRASE (with-first ROLE (called" role-name-1

 " and on LOT called" lot-name-1 ")"

 " and with-second ROLE (called" role-name-2

 " and on LOT called" lot-name-2 "))"

 " is called" phrase-name ";".

(R10) constraint-declaration = "CONSTRAINT called" constraint-name

 " is declared as" sentence ";".

(R11) nolot-name-list = "{" nolot-name {nolot-name} "}" ";"

(R12) lotname-list = "{" lot-name {lot-name} "}" ";"

Remark: nolot-name-1-list and lot-name-1-list follow the same syntax.

(R13) schema-name = identifying-name.

(R14) nolot-name = identifying-name.

(R15) lot-name = identifying-name.

(R16) role-name = identifying-name.

Remark: nolot-name-1, etc, follow the same syntax.

(R17) idea-name = identifying-name.

(R18) bridge-name = identifying-name.

(R19) phrase-name = identifying-name.

(R20) identifying-name = "''" letter {letter] digit] hyphen} "''".

Remark: The syntax of the constraint sentences, as well as the syntax of

 letter, digit and hyphen are not further defined here.

This particular syntax was taken, slightly rephrased and simplified, from the

RIDL report (Meersman - Vermeir 9).

It should be clear that a conceptual schema definition such as above can be

"stored" by considering each "declaration" as a sentence to be added. In gen-

eral delete, list, etc, of course have also their usual meaning in this con-

text. An example of such a "session" is to be found in section E.6.

Example:

 add CONCEPTUAL-SCHEMA called 'CAR-REGISTRATION';

 add NOLOT called {'CAR' 'CAR-MODEL' 'DATE' 'TRANSFER' 'OWNER'};

 add LOT called {'REG-NO' 'SERIAL-NO'};

 add NOLOT called 'MANUFACTURER' is subtype-of NOLOT called 'OWNER';

This property is not a coincidence. It follows directly from the fact that the

conceptual schema in these Binary Relationship approaches is perfectly capable

of describing itself in the sense of chapter 2, sections 2.2 and 2.4, and

chapter 3, section 3.5. We elaborate this further on.

(Note. A complete declaration of 'CAR-REGISTRATION' appears in section E.6).

 E.3.3._SEMANTICS.

 Rule Semantics Description

 (R2) (S1) NOLOT instances with the uniquely identifying

 names 'nolot-name` are added to the conceptual

 schema;

 (R3) (S2) same as (S1) for LOT instances with the names

 'lot-name`;

 (S3) LOT and NOLOT are disjoint subtypes of the meta-

 object type 'OBJECT-TYPE` (!) - in other words,

 'lot-name` must not already exist as a 'nolot-

 name`;

 (R5) (S4) the two NOLOTs mentioned must exist already;

 (S5) since subtyping is a transitive property, there

 must not be any closed "loop" in the subtype

 links;

 (R6) (S6) same as (S4), mutatis mutandis;

 (S7) same as (S5);

 (R7) (S8) ROLE instances with 'role-name` are added; two

 'role-name`s must be different when they are

 "on" the same NOLOT;

 (S9) same as (S4);

 (S10) the IDEA instance is then added with the

 uniquely identifying name 'idea-name`;

 (R8) (S11) same as (S8);

 (S12) the LOT and NOLOT mentioned must exist already;

 (S13) same as (S10), mutatis mutandis;

 (S14) the LOT mentioned must not appear in another

 BRIDGE declaration;

 (R9) (S15) same as (S8), mutatis mutandis;

 (S16) same as (S6);

 (S17) same as (S10), mutatis mutandis;

 (R10) (S18) a CONSTRAINT instance is added with the uniquely

 identifying name 'constraint-name`;

 (S19) "sentence" must describe in a syntactically cor-

 rect way a predicate (functor) which is to hold

 true at all times (for all states of the informa-

 tion base);

 (S20) no two CONSTRAINTs may be in contradiction (this

 results in the impossibility to populate the

 information base);

 (S21) the set of all CONSTRAINTs is considered to be

 an exhaustive list of all existing rules or con-

 straints on all states of the information base,

 i.e. a binary relationship instance is entered

 in the information base if and only if no

 CONSTRAINT is violated;

 (S22) the set of all constraints implies that all

 changes in the information base, which do not

 violate the declared CONSTRAINTs, are allowed;

 (R20) (S23) The identifying-names must be unique within the

 conceptual schema, except the role-names, which

 have a more limited scope of uniqueness (cf. S8,

 S11, S15).

General Remarks on these semantics:

 * People familiar with Knuth's attribute mechanism 10 per-

 haps will recognize the similarity between the above way of

 describing semantical properties attached to syntactical

 tokens and Knuth's attributes. See the literature 10 for

 more details.

 * Apart from these "attribute" semantics there are semantics

 inherent to the primitive constructs and the way they are

 used in the model. Some are already more or less informally

 discussed in previous sections and will be only mentioned in

 passing.

 * One of them is the concept of 'name`, such as 'nolot-name`

 or 'role-name`, for instance:

 'name`: a term referring to an individual entity

 in the universe of discourse used for de-

 noting a single entity. It is lexical in

 nature, that is there is a 1-1 corre-

 spondence with some string over a given

 alphabet. Nevertheless, it should be em-

 phasized that the Binary Relationship ap-

 proaches fully support homonyms as well

 as synonyms.

 * At this point, a careful reader will have recognized that,

 strictly speaking, terminal grammar elements such as NOLOT

 or IDEA (commonly called "keywords") are also name instances

 (of primitive concepts), but on the meta-conceptual level.

 To avoid confusion in the syntax and resulting language

 these names do not appear in quotes.

 * To make things complete, observe how the description of the

 semantics (S1 - S23) can themselves easily be viewed as con-

 straints (both static and dynamic) in effect on this meta-

 conceptual level !

 Important_note:

As seen above, nothing prevents of course to view conceptual schemata them-

selves, or any other "abstract" language, as a universe of discourse in these

approaches. It is possible this way to introduce several levels of descrip-

tion. However, at each level of description and in each state of the conceptual

schema and information base, the conceptual schema and the part of the universe

discourse formulation, it describes, are distinguishable by the environment.

The reason is obvious, since the conceptual schema must be known to serve as

the one and unique "contract" under which the information base may be ap-

proached and manipulated.

 E.4._GRAPHIC_FORMALISM.

Most investigators of the Binary Relationship approaches have adopted a graphic

formalism to represent a part of the conceptual schema and information base, or

more commonly, to represent a subset of the conceptual schema. As already ex-

plained in section E.1, a very clear distinction between non-lexical objects

and lexical objects is made. This distinction is reflected in the graphic

language. In this section we declare the graphic symbols used to represent the

information structuring part of the conceptual schema in these approaches.

 E.4.1._LINGUISTIC_OBJECT_TYPES.

 Figure E.3. Non-lexical object type symbol.

 Figure E.4. Lexical object type symbol.

 Figure E.5. Non-lexical object type symbol with a preferred

 ("natural") one-to-one bridge to a corresponding

 lexical object type. (This symbol is a "graphic

 macro construct" for the diagram construct shown

 in figure E.15).

 E.4.2._BINARY_RELATIONSHIP_TYPES.

 Figure E.6. Subtype link.

 Figure E.7. Idea or bridge symbol; R1 and R2 are role names.

 Figure E.8. Same, but R1 identifies R2.

 E.4.3._CONSTRAINTS_HAVING_A_DIAGRAMMATIC_REPRESENTATION.

 Figure E.9. Exclusion (between subtype links).

 Figure E.10. Unique combination (of idea or bridge roles).

 Figure E.11. Subset (between two role populations).

 Figure E.12. Equality of population (of idea and bridge roles).

Of course, not all constraints will or can be pictorially represented in a (ge-

neral) conceptual schema diagram. However, all are declared separately in some

convenient language which refers to the linguistic object type names, binary

relationship type names, etc, of the conceptual schema.

 E.4.4._SOME_EXAMPLES_OF_THE_GRAPHIC_FORMALISM_SYMBOLS.

Turning to the diagram for the example of appendix B, let us illustrate the

graphic formalism on a few simple excerpts from this diagram (cf. figure E.18).

 Figure E.13. A subtype; OWNER has, among others, a division

 between two exclusive sub-ownerships, GARAGE

 and GROUP.

 Figure E.14. An idea type; their occurrences are the real in-

 formation carrying elements in these approaches.

 Figure E.15. Describes a 1-1 bridge: a manufacturer and his

 manufacturer-name identify each other.

 Figure E.16. This linguistic object type has an implicit,

 usually obvious and preferred unique name for

 each of its occurrences; it is the standard

 shorthand construct for constructs like the

 example in figure E.15.

 Figure E.17. Knowing a particular DATE (occurrence), we can

 uniquely determine its YEAR, MONTH or DAY, but

 also the combination of any YEAR, MONTH, DAY

 uniquely identifies any DATE.

 E.5._MODELLING.

It will be clear there is no single "algorithm" to arrive at a conceptual

schema. We limit ourselves here to some heuristics of general value and

applicability.

One of the ways to design a conceptual schema in the Binary Relationship ap-

proaches is to take as starting point an informal perception of the universe of

discourse. Select the necessary propositions about the universe of discourse

and identify the free variables. Intuitively, these are terms (type names)

referring to classes in the universe of discourse which may be replaced by

particular (name-)instances in a sentence instance referring to entities that

belong to the selected classes. For example:

 "A car is made by a manufacturer"

 1

 ps0H

 A A

]]

]__ __]

 free variables

 0H

 ps1

Use the strings, representing the free variables, as possible names for types

in the conceptual schema.

Identify the proposition sentences which talk about other proposition sen-

tences. Some of these will result in additional linguistic object types and bi-

nary relationship types, while others result in constraints (sentences). For

some there might be an option for either. The former are typically encountered

where additional information is given about a particular sentence type (which

can be "add"-ed), while the latter will restrict the population of existing sen-

tence instances.

Thereafter, use the sentence occurrences expressing additional propositions

about an entity world to check against instances derived from the conceptual

schema. If one arrives at contradictions, then the conceptual schema will be

modified to eliminate the contradictions (supposing, as always, that the

propositions all hold in the universe of discourse).

Possibly extend the sentence occurrences referring to the universe of dis-

course. This extension is to be generated by the user together with the infor-

mation system designer. This step is needed when the conceptual schema and

information base is found to be an insufficiently complete view of the universe

of discourse.

Repeat the above described steps until an acceptable degree of quality is

reached.

 E.6._EXAMPLE_CONCEPTUAL_SCHEMA.

 E.6.1._GRAPHIC_REPRESENTATION.

 44

 Figure E.18. Example conceptual schema.

 E.6.2._LANGUAGE_EXAMPLE.

A description of this schema (complete but for trivial repetitions) in the

language of the grammar defined in section E.3 above, is as follows:

 begin

 add CONCEPTUAL-SCHEMA called 'CAR-REGISTRATION' ;

 add NOLOT called {'MANUFACTURER' 'OPERATING-MANUFACTURER' 'REG-CAR'

 'CAR' 'REG-MODEL' 'CAR-MODEL' 'FUEL-CONSUMPTION'

 'DATE' 'YEAR' 'MONTH' 'DAY' 'TRANSFER' 'DAY-SEQ'

 'OWNER' 'GARAGE' 'NON-TRADING-GARAGE' 'GROUP'

 'PERSON'};

 add LOT called {'MANUFACTURER-NAME' 'REG-NO' 'SERIAL-NO' 'MODEL-NAME'

 'FUEL-CONSUMPTION-AMOUNT' 'YEAR-NO' 'MONTH-NO'

 'DAY-NO' 'SEQ-NO' 'GARAGE-NAME' 'PERSON-NAME'};

 add NOLOT called 'OPERATING-MANUFACTURER'

 is subtype-of NOLOT called 'MANUFACTURER';

 add NOLOT called {'MANUFACTURER' 'GARAGE' 'GROUP'}

 is subtype-of NOLOT called 'OWNER';

 Note: three other subtype declarations omitted here.

 add IDEA (with-first ROLE (called 'manuf-by'

 and on NOLOT called 'CAR-MODEL')

 and with-second ROLE (called 'of'

 and on NOLOT called 'MANUFACTURER'))

 is called 'builds';

 Note: thirteen other idea declarations omitted here.

 add BRIDGE (with-first ROLE (called 'called'

 and on NOLOT called 'REG-CAR')

 and with-second ROLE (called 'of'

 and on LOT called 'REG-NO'))

 is called 'registration';

 Note: two other explicit bridge declarations omitted here.

 add BRIDGE (with-first ROLE (called 'called'

 and on NOLOT called 'MANUFACTURER')

 and with-second ROLE (called 'of'

 and on LOT called 'MANUFACTURER-NAME'))

 is called 'naming-of-model';

 Note: seven other implicit bridge declarations omitted here.

 Note: the list of constraints is given on the next pages

 end.

The reader will have no difficulty supplying the omitted declarations from the

diagram in Figure E.18. Note, that no phrases are present in this example.

In addition, the following list of constraint declaration bodies is conjectured

to be complete and exhaustive with respect to the example of appendix B.

In the example in this section it is assumed that only the Registration

Authority is permitted to manipulate the information system. This implies that

no additional authorization rules are included in the example. Furthermore, the

linguistic object type 'MANUFACTURER' contains only manufacturers with permis-

sion. Thus we take 'having permission' as the defining property of manufac-

turer, at least for the scope of interest of the Registration Authority. The

linguistic object type 'CAR' contains all cars known.

 1. CONSTRAINT manuf-id

 is declared as

 begin

 MANUFACTURER-NAME of MANUFACTURER is unique;

 MANUFACTURER called MANUFACTURER-NAME is unique

 end;

 2. CONSTRAINT number-of-operating-manufacturers

 is declared as

 number-of (OPERATING-MANUFACTURER) is not greater than 5;

 3. CONSTRAINT non-op-manufacturer

 is declared as

 begin

 for each M : MANUFACTURER

 condition

 (M is not OPERATING-MANUFACTURER)

 excludes (M is current-owner-of CAR)

 holds

 end for

 end;

 4. CONSTRAINT car-id

 is declared as

 begin

 REG-NO of REG-CAR is unique;

 REG-CAR called REG-NO is unique

 end;

 5. CONSTRAINT eternal-reg-no

 is declared as

 delete of (REG-NO of, REG-CAR called)

 is not permitted;

 6. CONSTRAINT mandatory-car-model

 is declared as

 begin

 CAR always is-of CAR-MODEL;

 CAR is-of CAR-MODEL is unique

 end;

 7. CONSTRAINT mandatory-serial-no

 is declared as

 begin

 CAR always has SERIAL-NO;

 CAR has SERIAL-NO is unique

 end;

 8. CONSTRAINT serial-no-manuf

 is declared as

 (SERIAL-NO of CAR and MANUFACTURER of CAR-MODEL of CAR)

 is unique;

 9. CONSTRAINT mandatory-car-owner

 is declared as

 CAR always in TRANSFER

 and

 OWNER always in TRANSFER;

 10. CONSTRAINT mandatory-production-year

 is declared as

 begin

 CAR always produced-in YEAR;

 CAR produced-in YEAR is unique

 end;

 11. CONSTRAINT registration-production-dates

 is declared as

 begin

 for each c : CAR

 condition

 YEAR-NO of reg-date-of (c) is in

 {YEAR-NO of-production-of c, (YEAR-NO of-production-of c) + 1}

 holds;

 if YEAR-NO of reg-date-of (c)

 is equal to (YEAR-NO of-production-of c) + 1

 then condition

 MONTH-NO of reg-date-of (c) is equal to '01'

 holds

 end if

 end for

 end;

 12. CONSTRAINT single-destruction-date

 is declared as

 CAR destruction-on DATE is unique;

 13 CONSTRAINT destruction

 is declared as

 YEAR-NO of DATE of-destruction-of CAR

 is not less than (YEAR-NO of today) - 2;

 14. CONSTRAINT car-model-id

 is declared as

 begin

 MODEL-NAME of REG-MODEL is unique;

 REG-MODEL called MODEL-NAME is unique

 end;

 15. CONSTRAINT eternal-model-name

 is declared as

 delete of (MODEL-NAME of, REG-MODEL called)

 is not permitted;

 16. CONSTRAINT mandatory-car-model-manufacturer

 is declared as

 begin

 CAR-MODEL always manuf-by MANUFACTURER;

 CAR-MODEL manuf-by MANUFACTURER is unique

 end;

 17. CONSTRAINT no-other-model-manuf

 is declared as

 delete of (CAR-MODEL manuf-by, MANUFACTURER of)

 is not permitted;

 18. CONSTRAINT must-know-fuel-cons

 is declared as

 begin

 CAR-MODEL always has-specified FUEL-CONSUMPTION;

 CAR-MODEL has-specified FUEL-CONSUMPTION is unique

 end;

 19. CONSTRAINT fuel-consumption-id

 is declared as

 begin

 FUEL-CONSUMPTION-AMOUNT of FUEL-CONSUMPTION is unique;

 FUEL-CONSUMPTION has FUEL-CONSUMPTION-AMOUNT is unique

 end;

 20. CONSTRAINT min-max-fuel-cons

 is declared as

 FUEL-CONSUMPTION-AMOUNT is

 (not greater than 25 and not less than 4);

 21. CONSTRAINT average-fuel-consumption

 is declared as

 begin

 if MONTH-NO of today is equal to '01'

 then for each M : MANUFACTURER

 condition

 average (FUEL-CONSUMPTION of MODEL of CAR

 (with CAR-MODEL maunf-by M and produced-in

 ((YEAR-NO of today) - 1)))

 is not greater than

 (FUEL-CONSUMPTION max-in (YEAR-NO of today) - 1)

 holds;

 on violation do

 send-message-to (M)

 end for

 end if

 end;

 Note: Average is standard function which causes the para-

 meter expression to be evaluated as a multiset (rather

 than a set). A multiset is a mathemathical concept

 that describes a set in which the same element may

 occur more than once.

 22. CONSTRAINT fuel-consumption-year

 is declared as

 YEAR with FUEL-CONSUMPTION is unique;

 23. CONSTRAINT garage-id

 is declared as

 begin

 GARAGE-NAME of GARAGE is unique;

 GARAGE called GARAGE-NAME is unique

 end;

 24. CONSTRAINT garage-suppliers

 is declared as

 begin

 for each G : GARAGE

 cars-of-Gar := current-stock-of (G);

 condition

 number-of (MANUFACTURER of CAR-MODEL of cars-of-garage)

 is not greater than 3

 holds

 end for

 end;

 25. CONSTRAINT garage-not-trading

 is declared as

 begin

 for each G : GARAGE

 condition

 (G is NON-TRADING-GARAGE) implies

 current-stock-of (G) is empty

 holds

 end for

 end;

 26. CONSTRAINT mandatory-person-in-group

 is declared as

 PERSON always in GROUP;

 27. CONSTRAINT person-id

 is declared as

 begin

 PERSON-NAME of PERSON is unique;

 PERSON called PERSON-NAME is unique

 end;

 28. CONSTRAINT owner-id

 is declared as

 TRANSFER to OWNER is unique;

 29. CONSTRAINT owner-subtypes

 is declared as

 OWNER is equal to (MANUFACTURER union GARAGE union GROUP);

 30. CONSTRAINT owner-exclusive-subtypes

 is declared as

 (GROUP intersection GARAGE is empty)

 and

 (GROUP intersection MANUFACTURER is empty)

 and

 (GARAGE intersection MANUFACTURER is empty);

 31. CONSTRAINT transfer-id;

 is declared as

 (CAR in TRANSFER and DATE of TRANSFER and SEQ-NO of TRANSFER)

 is unique;

 32. CONSTRAINT transfer-single-car

 is declared as

 begin

 TRANSFER always of CAR;

 TRANSFER of CAR is unique

 end;

 33. CONSTRAINT transfer-single-date

 is declared as

 begin

 TRANSFER always on DATE;

 TRANSFER on DATE is unique

 end;

 34. CONSTRAINT transfer-single-day-seq

 is declared as

 begin

 TRANSFER always with DAY-SEQ;

 TRANSFER with DAY-SEQ is unique

 end;

 35. CONSTRAINT date-id

 is declared as

 (YEAR of DATE and MONTH of DATE and DAY of DATE) is unique;

 36. CONSTRAINT single-date-descr

 is declared as

 begin

 DATE with YEAR is unique;

 DATE with MONTH is unique;

 DATE with DAY is unique

 end;

 37. CONSTRAINT year-id

 is declared as

 begin

 YEAR-NO of YEAR is unique;

 YEAR called YEAR-NO is unique

 end;

 38. CONSTRAINT month-id

 is declared as

 begin

 MONTH-NO of MONTH is unique;

 MONTH called MONTH-NO is unique

 end;

 39. CONSTRAINT day-id

 is declared as

 begin

 DAY-NO of DAY is unique;

 DAY called DAY-NO is unique

 end;

 40. CONSTRAINT day-seq-id

 is declared as

 begin

 SEQ-NO of DAY-SEQ is unique;

 DAY-SEQ called SEQ-NO is unique

 end;

 41. CONSTRAINT no-transfer-after-destruction

 is declared as

 begin

 for each c : CAR do

 condition

 YEAR-NO.MONTH-NO.DAY-NO of DATE of TRANSFER of c is less than

 YEAR-NO.MONTH-NO.DAY-NO of DATE of destruction-of c

 holds

 end for

 end;

 42. CONSTRAINT possible-transfers

 is declared as

 begin

 for each T : TRANSFER

 P := previous-owner-in (T);

 condition

 (T is TRANSFER to MANUFACTURER implies P is empty)

 and

 (T is TRANSFER to GARAGE implies P is not GARAGE)

 and

 (T is TRANSFER to GROUP implies P is not MANUFACTURER)

 holds

 end for

 end;

A few notes on the language example:

 1. Current-owner-of, current-stock-of, cars-of-garage, and

 previous-owner-in are functions that can be defined in the

 same language. They are used here as "macros". Note, that

 current-stock-of returns a set of cars which does not

 include destroyed cars.

 2. The super-types REG-MODEL and REG-CAR, with their associated

 bridges and the "no delete" constraints 5 and 15 guarantee

 the uniquenees of MODEL-NAME and REG-NO for_all_times.

 3. The (deducible) registration-date is equal to the date of

 the first transfer of a car.

 4. The identification of TRANSFER also acts as identification

 of OWNER and of GROUP, if a GROUP is involved.

 5. The keyword "today" is a standard predefined non-lexical

 object of type DATE which always contains the current

 (system) date.

 6. There is supposed to exist a collating sequence (natural

 order) for the occurrences of the LOT 'MONTH-NO'. Further-

 more YEAR-NO and DAY-NO are supposed to be populated with

 natural numbers. This needs to be done in such a way that

 the concatenation YEAR-NO.MONTH-NO.DAY-NO allows (a linear

 order) comparison between dates so described.

 E.7._CHECK_LIST_FOR_THE_CONCEPTUAL_SCHEMA.

The following analysis illustrates whether or not the necessary propositions

about the universe of discourse are captured in the conceptual schema. A D

implies that the assertion is described in the construct descriptions in the

conceptual schema. A numbered C refers to a defined constraint. An * refers to

remarks at the end of this section.

 CHECK NECESSARY_PROPOSITIONS

 D 1. The universe of discourse to be described has to do with the

 registration of cars and is limited to the scope of interest

 of the Registration Authority.

 C1 2. Each car manufacturer has a unique name.

 * 3. New car manufacturers can start operation provided they have

 the permission of the Registration Authority.

 * 4. The Registration Authority cannot withdraw the permission.

 C2 5. At any time not more than five autonomous manufacturers may

 operate.

 C3 6. Manufacturers may cease to operate, provided they do not own

 cars anymore.

 D 7. Each car manufacturer constructs cars in several models.

 C6 8. A car is of a particular model.

 * 9. A manufacturer gives a serial number to each car he produces.

 C8 10. This serial number is unique for all cars of one manufac-

 turer.

 * 11. A newly produced car is registered by the Registration Auth-

 ority as soon as practicable.

 C9/ 12. At this time the car is registered as belonging to the manu

 C29 facturer which produced it. Therefore the first owner will

 be the manufacturer who produced the car.

 * 13. Only the Registration Authority will assign a registration

 number to each registered car.

 C4/5 14. This registration number is unique for all cars for all time.

 C10 15. A car has a year of production.

 C11 16. Only in January may a car be registered as being produced in

 the previous year.

 C12 17. Cars can be destroyed whereupon the date of destruction is

 recorded.

 C13 18. The car's history has to be kept until the end of the second

 subsequent calendar year after its destruction. Thereafter

 it is removed from the registered information.

 C14/ 19. The name of the car model is unique for all car models for

 C15 all time.

 C16/ 20. Any specific car model is constructed by only one manufac

 C17 turer.

 * 21. From time to time new models will be introduced.

 C18 22. All cars of the same car model have the same fuel consump-

 tion.

 C19 23. This fuel consumption must be known to the Registration

 Authority.

 C20 24. The fuel consumption of a car will be between 4 and 25

 litres per 100 km.

 C21/ 25. The fuel consumption averaged over all individual cars pro

 C22 duced by a particular manufacturer in a particular year is

 required not to exceed a maximum value which is the same for

 each manufacturer.

 C22 26. The maximum fuel consumption rate may change from year to

 year.

 C21 27. At the end of January a message is sent to a manufacturer

 who has failed to meet this requirement in the previous year.

 C23 28. Each garage has a unique name.

 * 29. New garages may be established.

 C29 30. Garages may own cars.

 C24 31. A garage must not have, at any time, cars registered as

 belonging to the garage, from more than three manufacturers

 (which three does not matter, and for a particular garage

 may vary with time).

 C25 32. An existing garage may be closed down, provided it does not

 have any cars registered to it.

 C29 33. A particular person may have one or more cars registered as

 belonging to him or her.

 C26 34. It is also possible for two or more people to have one or

 several cars registered as belonging to them jointly and

 simultaneously.

 C27 35. People have unique names.

 C9/ 36. People are only known to the Registration Authority if they

 C26 own or have owned (one or more) cars, which still are known

 to the Registration Authority.

 C29/ 37. At any time a car is owned by either

 C30

 - its manufacturer,

 - a garage,

 - a person,

 - a group of persons,

 but not jointly by two or more of these categories.

 C9/ 38. Transfer of ownership is registered including the date of

 C33 transfer, the previous owner(s) and the new owner(s).

 C41 39. Transfer of ownership cannot take place anymore after a

 car's destruction.

 * 40. However, transfer of ownership may be recorded after the

 car's destruction, provided the transfer of ownership took

 place before the car's destruction.

 C42 41. Each manufacturer distributes new cars to several indepen-

 dent garages, each which may receive cars from more than one

 manufacturer.

 C42 42. Therefore a garage always will be a car's second owner.

 C42 43. Manufacturers do not distribute cars to other manufacturers

 or directly to people.

 C42 44. Each garage may sell - i.e., cause transfer of registered

 ownership of - new or used cars to people, and may buy -

 i.e., cause transfer of registrered ownership of - cars from

 people.

 C42 45. Garages are not allowed to sell cars to other garages.

 C42 46. Garages are not allowed to sell cars to manufacturers.

 C42 47. People can sell cars to other people or buy cars from other

 people.

Remarks for the Binary Relationship approaches:

 * No authorization rules are included. For example, checks 3, 4, 9, 11,

 and 13.

 * Prescriptive rules for interactions are not part of the conceptual

 schema. For example, checks 21, 29, and 40.

 E.8._REFERENCES.

 1 KENT, W. 'Data and Reality`,

 North-Holland Publishing Company, 1978.

 2 BUBENKO, J.A. 'The temporal dimension in information modelling`

 In: Architecture and models in database management

 systems, Proceedings IFIP TC2 Conference,

 Nice, 1977; North-Holland Publishing Company.

 3 ABRIAL, J.R. 'Data Semantics`,

 In: Data Base Management, Proceedings IFIP TC2

 conference, Cargese, 1974; North-Holland Pub-

 lishing Company.

 4 BRACCHI, G., PAOLINI, P. and PELAGATTI, G.

 'Binary Logical Associations in Data Modelling`

 In: Modelling in data base management systems,

 proceedings IFIP TC2 Conference, Freudenstadt

 1976; North-Holland Publishing Company.

 5 SENKO, M.E. 'Conceptual schema, abstract data structures,

 enterprise descriptions`,

 In: International computing symposium 1977; North-

 Holland Publishing Company.

 6 DURCHHOLZ, R. and RICHTER, G.

 'Concepts for Data Base Management Systems`

 In: Data Base Management, Proceedings IFIP TC2

 conference, Cargese, 1974; North-Holland Pub-

 lishing Company.

 7 FALKENBERG, E., BREUTMAN, B. and MAUER, R.

 'CSL: a language for defining conceptual schemas`,

 In: Data Base Architecture, Proceedings IFIP TC2,

 Venice 1979, North-Holland Publishing Company.

 8 NIJSSEN, G.M. 'A framework for advanced mass storage appli-

 cations`,

 In: Medinfo 80, Proceedings of the Third World Con-

 ference on Medical Informatics, Tokyo 1980,

 North-Holland Publishing Company, l980.

 9 MEERSMAN, R. and VERMEIR, D.

 'RIDL Reference Manual`,

 In: Data Management Research Report, January 1980,

 Control Data Belgium.

 10 KNUTH, D.E. 'Semantics of Context-free Languages`,

 In: Math. Systems Theory J. 2:2, pp. 127 - 146.

