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APPENDIX F.                         THE INTERPRETED PREDICATE LOGIC APPROACHES.

========================================================================

  F.1._EMPHASIS_OF_THE_APPROACHES.

The Interpreted Predicate Logic (IPL) approaches to conceptual schema descrip-

tion are based on the fundamental principle that not only the conceptual schema

but the information base as well and, thus, the entire conceptual schema and

information base is a collection of abstract things called "sentences" which

are in practice represented by strings of characters that are themselves en-

coded in a suitable set of physically real states in the storage media of an in-

formation system.

The guiding principle in the design of these approaches is the use of an inter-

preted, axiomatized, deductive, formal system of logic that places minimal

demands, in_principle, on the information processor external to the conceptual

schema and information base itself. In practice, of course, many theoretically

unnecessary constructs may well be built into an actual information processor

for reasons of efficiency and costs.

The principle enunciated in the preceding paragraph can be satisfied in a

variety of ways and a second guiding principle is necessary to permit choice

amongst these various possibilities. The relevant principle derives from the

requirement that conceptual schemata formulated according to these approaches

be easy to use and to understand by a variety of users. Thus, a mechanism for

adding constructs of arbitrary complexity to the formal system is necessary so

that users of the system may interact with it at any desired level of aggre-

gation of concepts  1, 2, 3 . In order for this principle to be observed with-

out violating the first principle, the formal system must have within itself a

mechanism for incorporating the definitions of new constructs in terms of those

already present.

For the purpose of this exposition the information system in_use is a

combination of the printed pages in this Report and the mind of the reader. The

characters used to express sentences are here chosen from IS 646 ("7-bit

input/output coded character set for information interchange") in order to

conform to existing ISO practices, although it will be evident to the reader

that a larger, more comprehensive character set would enhance readibility.

Considering the objectives for a conceptual schema, cited in section 1.9 of

chapter 1, the following remarks could be made about the IPL approaches:

     1. "To_provide_a_common_basis_for_understanding_the_general_be-

         haviour_of_the_universe_of_discourse."

         A formal language of logic, as demonstrated in this chapter,

         is sufficient to completely describe the universe of dis-

         course including all classes, rules, and constraints of its

         behaviour.

     2. "To_define_the_allowed_evolution_and_manipulation_of_the_in-

         formation_about_the_universe_of_discourse."

         The use of the concepts of a formal system of logic, as out-

         lined in the IPL approaches, makes it possible to completely

         describe the dynamic rules and constraints of the conceptual

         schema and information base, as well as the static rules and

         constraints, and thus gives a complete control over the

         manipulation of the conceptual schema and information base.

         As, fundamentally, there is no difference in the mechanisms

         needed for insertion, deletion, etc, of sentences, whether

         they are thought to be in the conceptual schema or in the in-

         formation base, there will be no extra difficulties or com-

         plexities in changing the conceptual schema to reflect

         changes in the abstraction system.

     3. "To_provide_a_basis_for_interpretation_of_external_and_inter-

         nal_syntactical_forms_which_represent_the_information_about_

         the_universe_of_discourse.

         To serve this role, it is needed that a conceptual schema

         contains the deepest structure of the problem description

         and formulates all rules and constraints applicable in the

         conceptual schema and information base. This requirement is

         fully met by the IPL approaches.

         Although a formal language of logic, as demonstrated in this

         chapter, is sufficient to completely describe the universe

         of discourse, such a language may be extended with, or

         (partly) replaced by, the more complex constructs mentionned

         above to ease users of the system (e.g. 4 ). Often a graphic

         formalism covering major aspects of the conceptual schema is

         added to ease communication with users in discussing aspects

         of the conceptual schema and information base  1, 2, 3 .

     4. "To_provide_a_basis_of_mappings_between_and_among_external_and

         internal_schemata."

         The maximum degree of stability for the purpose meant here

         is reached with semantically irreducible constructs and con-

         structs free of additional constraints. This requirement is

         fully met by the IPL approaches.

  F.2._PRIMITIVE_CONCEPTS_OF_THE_APPROACHES.

In the IPL approaches to conceptual schema and information base, there are two

fundamental concepts for the universe of discourse, entities and propositions,

as defined in chapter 2, section 2.1. As far as the universe of discourse to be

modelled is concerned, the only things that exist are entities, and the only

situations that can be affirmed or denied about entities in the universe of dis-

course are propositions.

The establishment of a formal system of logic to describe the universe of dis-

course incorporates the requirements of chapter 3, section 3.2. As stated

there, the axioms and deduction rules are chosen in such a way as to result in

each axiom being interpreted as a true assertion about the universe of dis-

course and each sentence immediately deducible from a set of sentences inter-

preted as true assertions about the universe of discourse is itself interpreted

as a true assertion about the universe of discourse. The only deduction rule re-

quired is that given in section F.3.3 and it does preserve truth. The axioms,

however, are to a large extent chosen by the designer of the conceptual schema

for a particular universe of discourse and it is incumbent on that designer to

insure that the interpretation is correct.

The outline of the formal language used is prescribed only to the extent necess-

ary to establish the fundamental categories of grammatical constructs, and to

insure interpretability by a universal Turing machine. No concrete syntax is

exposed (except as necessary to detail the example), so that any formal lan-

guage adhering to the abstract syntax discussed can be used to carry out the

program described.

What is presented in this chapter follows from a long line of development of

formal logic in the tradition of Boole (1847)  5 , Jevons (1864)  6 , Frege

(1879)  7 , Peirce (1885)  8 , Peano (1908)  9 , Zermelo (1908)  10 , and

Whitehead and Russell (1910-1913)  11 . The contemporary exposition closest to

the spirit of these approaches is that of Quine (1951)  12 . Its metaphysical

presuppositions are those of the modern logistic school, closely related to the

modern counterpart of naive realism. Plato, where are you when we need you?

  F.3._GRAMMAR_AND_SEMANTICS.

The fundamental notions of an abstract syntax for a formal language have

already been presented in chapter 3, section 3.3. Those notions are amplified

in section F.3.1 below in a form suited to the IPL approaches.

To attribute meaning (semantics) to various expressions in the language, it is

necessary to start with a (hopefully small) set of undefined concepts known as

primitives. Other concepts then have meanings which are derivable from the in-

formally understood primitive concepts through the introduction of formal defi-

nitions. The relevant essentials of the meaning of each primitive concept is

formally captured through the assertion of axioms assumed to be valid. This is

exactly the situation that obtains in elementary synthetic geometry where the

concepts of points, lines and planes are taken as primitive (undefined) con-

cepts, more complicated constructs such as triangles and circles are defined in

terms of these primitives and axioms (Euclid's postulates) are stated to assert

the properties of points, lines and planes.

  F.3.1._ABSTRACT_SYNTAX.

As defined in section 2.1 of chapter 2 and section 3.3 of chapter 3 (repeated

here for the convenience of the reader), certain general concepts are primitive

notions that characterize the abstract syntax (grammar) of any language. They

are:

           TERM

         A linguistic object that refers to an entity;

           SENTENCE

         A linguistic object which expresses a proposition;

           FUNCTOR

         A linguistic object that refers to a function on other lin-

         guistic objects taking as arguments (input) a list of lin-

         guistic objects (terms, sentences, functors) and yielding as

         a value (output) a single, uniquely determined linguistic

         object (term, sentence, functor).

It is the functor that permits the construction of linguistic objects of arbit-

rary complexity. All that appears to be necessary for a conceptual schema and

information base are first_level_functors, those functors where the arguments

are all selected from among the terms and sentences (never functors) and the

value is always a term or a sentence (never a functor). However, nothing in

what is explicated below will prohibit the introduction of higher level

functors in the event such constructs turn out to be useful for a conceptual

schema and information base.

Functors are pure if their argument lists are always either all sentences or

all terms, not a mixture. In addition, functors are substitution_functors if

there exists a pattern into which the elements of the argument list can be sub-

stituted. Examples are: "If ... Then ---" and "... + ---". Finally, functors

may be fixed or not depending on whether the argument list is fixed in length

or not.

  Elementary_functors are fixed, first level, substitution functors. There are

four kinds of pure elementary functors. They are:

    Arguments      Value          Name           Examples

    ======================================================================

    Terms          Term           Operator       ... + ---

                                                 ...'s mother

    Terms          Sentence       Predicate      ... < ---

                                                 ... is red

    Sentences      Sentence       Connective     ... and ---

                                                 not ...

    Sentences      Term           Subnector      "..."

                                                 the probability that ...

It should be apparent that each of the above described pure elementary functors

has application to conceptual schemata. Two other kinds of functors that are

elementary but not pure have important application to conceptual schemata: quan-

tifiers and abstractors. Noting that variables are a kind of term (cf. chapter

3, section 3.3):

    Arguments      Value          Name           Examples

    ======================================================================

    Variable +     Sentence       Quantifier     For all ... ---

      sentence

    Variable +     Term           Abstractor     The ... such that ---

      sentence

Variables are the analogues of natural language pronouns and refer to unspe-

cified, indeterminate entities in the universe of discourse, exactly in the

same fashion that pronouns in natural language refer to unspecified, indeter-

minate things in sentences with anaphora (as in "It is red").

Just as in natural language one deals with dangling pronouns by providing some

kind of referent, the same is done in formal languages. Quantifiers and abstrac-

tors fill that role as the examples indicate. One can repair the anaphora shown

above by asserting (falsely but now meaningfully) "Whatever it is, it is red"

Paraphrasing, one has "For every it, it is red" It is a trivial step to "For

all ... ... is red."

Sentences and terms, however constructed, may be either open or closed depend-

ing on whether they have free variables or not, a free variable being the

analogue of a dangling pronoun. Thus, "..." is free in "... is red" but not in

"For all ... ... is red" Only closed sentences can give unambiguous interpre-

tation and for that reason will be the only kind of sentences appearing in a

conceptual schema and information base. It goes beyond the scope of this

chapter to provide a detailed descripton of open and closed sentences and how

variables are bound (see Quine  12  for details). It is sufficient to note

that any sentence can have all its free variables eliminated by prefixing

sufficient quantifiers.

For a purely extensional system that avoids modalities (e.g., "it is necessary

that", "it is known that", "it is obligatory that", etc.), the only concepts re-

quired as primitives are variables (a kind of term, as noted), the connectives

"Not..." and "If ... Then ---", the universal quantifier "For all ... ---", the

abstractor "The ... such that ---", and a suitable supply of appropriate predi-

cates. Other choices for primitives are quite possible and nothing fundamental

in what follows precludes alteration of the primitives. For example, proper

names can be introduced as primitive terms, but to simplify the discussion here

they will be avoided. It has been shown by Russell  13  that proper names can

always be eliminated in favor of predicates through the particular abstractor

known as a "descriptor" (the exemplar abstractor above), and defining the

proper name itself in context.

The essentials of this abstract syntax are as formulated by Curry and Feys  14

and the explicit details are derived from Anderson and Belnap  15 . It should

be apparent that considerable detail is required to establish a particular con-

crete syntax.

  F.3.2._CONCRETE_SYNTAX.

In contrast to the other examples in this report, the concrete syntax for any

version of the IPL approaches cannot be fully explicated in the syntax nota-

tion, presented in appendix C, as essential aspects of the language are not

context free. What follows in this section is a sketch of a concrete syntax

sufficient for understanding of the example exposed in section F.6. Some of it

is necessarily discursive here in view of the context sensitivity, but it must

be understood that the complete syntax can be made fully formal and can be

expressed fully in any language that is suitable for expressing conceptual

schemata using an IPL approach.

The language described below will be given the unimaginative name of "L". It is

not likely to exhibit the precise form that will be useful in practice as the

choice of syntactical detail here has been made on the basis of a desire to

limit the character set to emphasize the exposition.

Thus:

upper-case-letter  = "A" ] "B" ] "C" ] "D" ] "E" ] "F" ] "G" ] "H" ] "I" ]

                     "J" ] "K" ] "L" ] "M" ] "N" ] "O" ] "P" ] "Q" ] "R" ]

                     "S" ] "T" ] "U" ] "V" ] "W" ] "X" ] "Y" ] "Z".

lower-case-letter  = "a" ] "b" ] "c" ] "d" ] "e" ] "f" ] "g" ] "h" ] "i" ]

                     "j" ] "k" ] "l" ] "m" ] "n" ] "o" ] "p" ] "q" ] "r" ]

                     "s" ] "t" ] "u" ] "v" ] "w" ] "x" ] "y" ] "z".

digit              = "0" ] "1" ] "2" ] "3" ] "4" ] "5" ] "6" ] "7" ] "8" ] "9".

prime              = "''".             Note that this means a single prime

                                       character '.

point              = ".".

other-mark         = "&" ] "(" ] ")" ] "*" ] "+" ] "-" ] "/" ] ":" ] ";" ]

                     "," ] "<" ] "=" ] ">" ] " " ] " " ] " " ] "{" ] "}".

In the context of an IS 646 representation, one may use the control character

"0001000" followed by the graphic character "1111101", yielding "backspace,

underline", and so form:

upper-case-italic  = "A" ] "B" ] "C" ] "D" ] "E" ] "F" ] "G" ] "H" ] "I" ]

                     "J" ] "K" ] "L" ] "M" ] "N" ] "O" ] "P" ] "Q" ] "R" ]

                     "S" ] "T" ] "U" ] "V" ] "W" ] "X" ] "Y" ] "Z".

lower-case-italic  = "a" ] "b" ] "c" ] "d" ] "e" ] "f" ] "g" ] "h" ] "i" ]

                     "j" ] "k" ] "l" ] "m" ] "n" ] "o" ] "p" ] "q" ] "r" ]

                     "s" ] "t" ] "u" ] "v" ] "w" ] "x" ] "y" ] "z".

Collecting, one has:

mark               = upper-case-letter ] lower-case-letter ] digit ] prime ]

                     point ] upper-case-italic ] lower-case-italic ] other mark.

A number of possible characters from the IS 646 graphics are not marks of L as

defined here because they are unnecessary in the example. The blank character,

"0000010", however, is never one of the marks of L. In this respect L is like

FORTRAN where blanks may appear anywhere throughout the text to provide

readability but have no significance. Of course, even this is not an essential

property of L. Nothing in any concrete syntax is fundamental.

Proceeding:

string             = mark {mark}.

variable           = (upper-case-italic {prime}) ] (lower-case-italic {prime}).

compound-symbol    = upper-case-letter {lower-case-letter} {prime}.

number-symbol      = {digit}  point  {digit}.

                        Note, provided the entire string is neither preceded

                        nor followed by a digit or a point.

symbol             = variable ] compound-symbol ] number-symbol ] other-mark.

expression         = symbol {symbol}.

A little reflection will convince the reader that any string that is an ex-

pression can be decomposed into symbols in exactly one way.

primitive-predicate  = "Pr" {lower-case-letter} {prime}.

prime-variable-match = (prime variable) ] (prime prime-variable-match variable).

atomic-sentence      = "Pr" {lower-case-letter} prime-variable-match.

primitive-sentence   = atomic-sentence ]

                       ("For all" variable primitive-sentence) ]

                       ("Not" primitive-sentence) ]

                       ("If" primitive-sentence "Then" primitive-sentence).

An occurrence of a variable in a primitive-sentence is exactly what it infor-

mally sounds like but is a fundamentally context sensitive aspect of L. There

is no occurrence of "x" in "x'". With that caveat, an occurrence of a variable

is bound_in_a_primitive-sentence if there is some primitive-sentence containing

the occurrence of the variable that is part or all of the primitive-sentence in

question and begins with the expression "For all" followed by the variable.

Then, an occurrence of a variable in a primitive-sentence is free_in_the_primi-

tive-sentence if it is not bound in the primitive-sentence. A variable is a

free_variable_of_a_primitive-sentence if it has a free occurrence in the primi-

tive-sentence.

A primitive-sentence is open if it has at least one free variable, otherwise,

it is closed.

Everything that can be asserted in L can be asserted by closed primitive-sen-

tences. However, even the simplest assertions become lengthy, cumbersome and

impossible to read when expressed as primitive-sentences. Therefore, defini-

tions are introduced:

         definition     Any expression is a definition if it is as-

                        serted to be so by an authorized source.

Excepting only a small number of special cases necessary to the initial boot-

strap, cases that need not obtrude on this exposition, all definitions will be

closed sentences in one of the following two forms:

                          expression "Iff" expression.

                           expression "=" expression.

As will be seen later, the symbol "Iff" will be interpreted as the connective

of the biconditional, and its incorporation between two sentences asserts the

logical equivalence of the sentences. A sequence of definitions in this first

form is constructed so that the right hand expression (definiens) of each

definition in the sequence is either a primitive-sentence or the left hand ex-

pression (definiendum) of some earlier definition in the sequence. In view of

the intersubstitutability of logically equivalent expressions, very complex as-

sertions can be made in compact form and shown to be logically equivalent to a

primitive-sentence.

A quite similar process occurs for definitions of the second form as the symbol

"=" will be interpreted as the predicate of identity and the same kind of in-

tersubstitutability applies. Of course in this situation the expressions on

both sides of the identity sign are terms rather than sentences. Using the

device of contextual definition (Russell  13 ), terms can be defined in every

place that a variable (also a term) can appear in an atomic-sentence and so any-

thing that can be asserted about the entity denoted by the term can be inter-

preted.

Given a sequence of definitions (the subject of section F.5.2), there is little

more to say about the concrete syntax of L. For the sake of completeness the

following concepts, given import in section F.5, are useful to introduce here

in order to demonstrate that they are, in fact, syntactical concepts. Thus:

         axiom          Any closed sentence is an axiom if it is as-

                        serted to be so by an authorized source (as

                        in chapter 3, section 3.3). All definitions

                        are axioms;

         proof          Any sequence of closed sentences is a proof

                        if for each sentence Q, either Q is an axiom

                        or there are sentences P and "If P Then Q"

                        prior to Q in the sequence;

         theorem        Any sentence for which there exists a proof

                        containing that sentence is a theorem.

While there is, in general, no algorithm for finding a proof that contains a

given sentence and therefore no decision procedure for determining whether a

candidate sentence is a theorem or not, the definition of "theorem" is syntac-

tic and there is a mechanism for determining whether a given sequence is a

proof and contains a candidate. Having defined "theorem", the discussion must

now turn to "truth", a different matter entirely.

  F.3.3._SEMANTICS.

Assuming an explicit concrete syntax yielding a formal language, L, the se-

mantics of L is established by assigning meaning to its primitive constructs,

as outlined in chapter 3, section 3.4. From that assignment all other semantic

notions are derived from interpretation of the formal definitions of the

derived constructs.

The interpretation of variables, the only primitive terms, has already been

given (cf. chapter 3). The interpretation of the two primitive connectives and

the primitive quantifier are obvious and are the usual ones intended by the

conventional first order logic with the caution that the conditional "If ...

Then ---" is the strict truth-functional conditional which asserts a true

proposition so long as it is not the case that "..." asserts a true proposition

while "---" asserts a false proposition.

The deduction rules must preserve truth. The latter is simple; use the rule of

detachment:

                from "..." and "If ... Then ---" deduce "---".

  F.4._GRAPHIC_FORMALISM.

Some IPL approaches (e.g.  1, 2, 3 ) have adopted a graphic formalism to re-

present parts of the universe of discourse or its description. In most cases

the graphic formalism is used to show the most important propositions - those

that are referred to by the atomic-sentences - and the "entity pattern" they

constitute.

The graphic formalism demonstrated in this chapter is taken from  3 . Here an

entity is shown as a circle; the proposition is shown as a line connected to

the entity or entities. The same formalism is adopted to show patterns of propo-

sitions about entities. For example the proposition about two entities as de-

scribed by

                                  Pra''  xy

is shown in figure F.1:

                           x    __Pra__    y

    Figure F.1. Graphic representation of a proposition about two entities.

A proposition about three entities as described by

                                 Prb'''  xyz

is shown in figure F.2:

                           x                y

                                   .  Prb

                                   z

   Figure F.2. Graphic representation of a proposition about three entities.

  F.5._MODELLING.

  F.5.1._CLASSIFICATION_OF_AXIOMS.

From among the sentences of L certain designated closed sentences are selected

as axioms. One particular set, A1, constitutes the axioms_of_logic_and_mathe-

matics. Application of the rules of deduction produces an additional set of sen-

tences that are the theorems deducible solely on the basis of the axioms A1.

While a wide variety of different sets of sentences can be chosen to serve as

A1, the totality of theorems will be the same in each case as a general rule.

It is a reasonable assumption that every conceptual schema and information base

will include the same A1.

It should be noted that most of the "axioms" of A1 are actually axiom schemata,

metalanguage assertions that every sentence of such and such a form is an

axiom. Thus, while there are a finite number of such schemata, there are

actually an infinite number of axioms in A1. For example, every sentence of the

form:

                      If (If Not ... Then ...) Then ...,

where "..." is replaced throughout by an arbitrary sentence, is an axiom of A1.

  1
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          ___________________________________________________________

         ]    ]             ]                                        ]

         ]    ]             ] Axioms of logic & mathematics      A1  ]

         ]    ]             ]________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]               Sentences deducible from A1            ]

         ]    ]______________________________________________________]

         ]    ]                                                      ]

         ]    ]             ]                                        ]

         ]    ]             ] Axioms of cosmography              A2  ]

         ]    ]             ]________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]               Sentences deducible from A1 - A2       ]

         ]    ]______________________________________________________]

         ] CS ]                                                      ]

         ]    ]             ]                                        ]

         ]    ]             ] Axioms of enterprise type          A3  ]

         ]    ]             ]________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]               Sentences deducible from A1 - A3       ]

         ]    ]______________________________________________________]

         ]    ]                                                      ]

         ]    ]             ]                                        ]

         ]    ]             ] Axioms of specific enterprise      A4  ]

         ]    ]             ]________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]               Sentences deducible from A1 - A4       ]

         ]    ]                                                      ]

         ]===========================================================]

         ]    ]                                                      ]

         ]    ]         Sentences required in the information base   ]

         ]    ]______________________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]         Sentences deducible from all the above       ]

         ]    ]______________________________________________________]

         ] IB ]                                                      ]

         ]    ]                                                      ]

         ]    ]         Sentences optional in the information base   ]

         ]    ]______________________________________________________]

         ]    ]                                                      ]

         ]    ]                                                      ]

         ]    ]         Sentences deducible from all the above       ]

         ]____]______________________________________________________]

          ___________________________________________________________

          _______                                             _______

         ]_______                                             _______]

         ]_______  Sets of sentences consistent with CS & IB  _______]

         ]___________________________________________________________]

         ]_______                                             _______]

         ]_______                                             _______]

         ]_______ Sets of sentences inconsistent with CS & IB _______]

         ]___________________________________________________________]

          ___________________________________________________________

         ]                                                           ]

         ]        Sets of sentences inconsistent with A1 - A4        ]

         ]___________________________________________________________]

         ]                                                           ]

         ]                                                           ]

         ]        Sets of sentences inconsistent with A1 - A3        ]

         ]___________________________________________________________]

         ]                                                           ]

         ]                                                           ]

         ]        Sets of sentences inconsistent with A1 - A2        ]

         ]___________________________________________________________]

         ]                                                           ]

         ]                                                           ]

         ]           Sets of sentences inconsistent with A1          ]

         ]___________________________________________________________]

  0H

 ps1

                  Figure F.3. Classification of L-sentences.

A second set of sentences, A2, somewhat gradiloquently called the axioms_of

cosmography, will be almost as ubiquitous as A1. These axioms embrace the

relevant physical laws pertinant to the universe of discourse under consider-

ation. They will include those axioms invoking the properties of marks and

strings, permitting the incorporation of metalanguages into L. In conventional

enterprises they will also include the fundamental sentences that deal with

such matters as calendrical rules and geographical locations. A1 and A2 taken

together will result in the deducibility of an additional set of theorems. It

can be expected that both A1 and A2, together with a useful set of their

consequent theorems, will be supplied by your friendly vendor.

It is not unreasonable to suppose that there will be a set of constructs

broadly applicable to all enterprises of a given type; e.g., all insurance

commpanies, all banks, all universities, etc. Thus there will be a set of sen-

tences, A3, that constitutes the axioms_of_enterprise_type. These axioms may be

supplied by vendors as well, or possibly by trade associations. As before,

additional theorems are deducible in concert with A1 and A2.

Finally, there will be the set of sentences, A4, the axioms_of_the_specific

enterprise, providing the details of the particular enterprise, i.e., the

universe of discourse, under consideration. A4 is the set of sentences that

will be provided by the enterprise administrator. The totality of theorems

deducible from A1/A4 is_the_conceptual_schema for that universe of discourse in

an IPL approach.

The conceptual schema does not exhaust the sentences. Among other things, if

all possible sentences were in the conceptual schema it would be inconsistent

by definition. Further, it would leave nothing for the information base itself

to contain. There will, in general, be many different permissible_collections

of_sentences, sets of sentences not inconsistent with themselves or the con-

ceptual schema. Different permissible collections of sentences, of course, may

be inconsistent with each other. The information base will consist of one of

these permissible collections of sentences together with the theorems now de-

ducible from them in conjunction with the conceptual schema.

It will frequently be the case for a particular conceptual schema and informa-

tion base that some set of sentences is required to be in the information

base. This is a different concept from the axioms or the theorems deducible

therefrom. The conceptual schema may require that some parametric value be

available, for example. (An instance of this is the need for a sentence assert-

ing the value of fuel consumption in the example universe of discourse of ap-

pendix A). Here the conceptual schema does not specify the precise value,

merely that there is one. A sentence asserting what that value is must be in

the information base but not in the conceptual schema. There may be several

possibilities and any of them will do, but one of them must be present.

Given the conceptual schema and the required sentences, the rest of the concep-

tual schema and information base is optional, providing only that the totality

forms a permissible collection. At any given time, of course, the instantaneous

state of the conceptual schema and information base is a precisely defined set

of sentences.

There will be other sets of sentences consistent with the instantaneous state

of the conceptual schema and information base and, therefore, permissible col-

lections of sentences to insert.

There will be other sets of sentences inconsistent with the instantaneous state

of the information base, but not with the conceptual schema. Such sets of

sentences are permissible collections of sentences with which to modify the

conceptual schema and information base by replacing the existing information

base.

In addition, there are sets of sentences that are inconsistent with the axioms

A4, with A3 and A4, with A2, A3 and A4, and, finally with the entire conceptual

schema including A1. Every sentence of L falls into one of the categories con-

sidered above, although there are some sentences for which it is impossible in

principle to determine into which category they fall.

Given appropriate authorization rules, any set of sentences not inconsistent in

itself may replace the set of sentences with which it is inconsistent. If this

changes the conceptual schema in any way, a new universe of discourse is being

described. This entire discussion is illustrated in figure F.3.

  F.5.2._CONSTRUCTS.

The discussion in section F.3.2 was rather sparse. The purpose of this section

is to elaborate the primitive concepts into usable forms. First considered are

those constructs essential to the basal logic. In this beginning discussion the

letters "P" and "Q" will stand in place of arbitrary sentences and the letters

"X" and "Y" in place of arbitrary terms. What follows is precise but not fully

formal.

Certain connectives are useful and can be defined in terms of the primitive-

connectives. These are the usual connectives found in elementary logic:

         "(P Or Q)"     equivalent to  "(If Not P Then Q)".

         "(P & Q)"      equivalent to  "Not (Not P Or Not Q)".

         "(P Iff Q)"    equivalent to  "((If P Then Q) & (If Q Then P))".

One additional quantifier is useful:

         "For some X P" equivalent to  "Not For all X Not P.

The above four definitions (actually definitional schemata) together with six

axiom schemata establishing the properties of:

                        "Not P"

                        "(If P Then Q)"

                        "For all X P"

are sufficient for all logic necessary that is independent of specific pre-

dicates.

Five primitive-predicates are required for the present formulation of mathema-

tics, three are singulary and two are binary. Primitive-predicates were intro-

duced syntactically in section F.3.2 as having the form:

                       "Pr" {lower-case-letter} {prime}.

The "Pr" establishes that the symbol is a predicate, the string of lower case

letters merely serve to distinguish one predicate from another and the number

of primes determines how many variables must follow the predicate to construct

a well formed atomic sentence. Using definitions, more memorable notation can

be introduced:

                        (Null X Iff Pra'X).

                        (Individual X Iff Prb'X).

                        (Class X Iff Prc'X).

Interpretation of these three predicates is simple. "Null X" asserts that the

entity denoted by X is the null entity, "Individual X" asserts that the entity

denoted by X is an individual and "Class X" asserts that the entity denoted by

X is a class. In every universe of discourse in the IPL approaches the totality

of entities is factored into these mutually exclusive categories. The null enti-

ty is the rough equivalent of nothing. The null entity exists, that is there

will be a theorem, "For some x Null x  ", but it is the sort of entity to which

things that are impossible reduce, e.g. "Null The square circle"".

Individuals and classes are the interesting entities and everything non-null is

one or the other. Individuals are the kinds of entities that are things in them-

selves and to which the concept of class membership does not apply. Classes, on

the other hand, are the kinds of entities to which the concept of membership is

central. A class is its members.

Two binary predicates are crucial:

                        ((X = Y) Iff Pra''XY).

                        ((X Is among Y) Iff Prb''XY).

"X = Y" asserts that the entity denoted by X is identical to the entity denoted

by Y and "X Is among Y" asserts that the entity denoted by X is a member of the

class denoted by Y. Obviously Y must denote a class for "X Is among Y" to

assert a true proposition but "X Is among Y" is meaningful no matter what Y

denotes. This kind of situation is characteristic of the IPL approaches and

forces the use of explicit constraints. There must be an axiom such as:

            "For all X For all Y (If (X Is among Y) Then Class Y).

The unusual form of the predicate of class member-ship, "Is among", derives

from the absence of the Greek letter epsilon in the IS 646 alphabet.

The sufficiency of these primitive-predicates for logic and mathematics has

been long since demonstrated (for details see Frege  7 , Whitehead and Russell

 11 , Quine  12 , and, for the present context, Steel  17 ). Five axiom

schemata and seventeen explicit axioms are sufficient in the usual formulations.

The number of definitions that need to be incorporated will depend on the

amount of mathematics required for the description of the particular universe

of discourse under consideration. In what follows only those concepts relevant

to the example of appendix B will be explicated at all and these rather infor-

mally, principally to introduce the notation. First, the concept of definite de-

scriptions is:

         "The X P"    denotes the single entity X such that the proposi-

                      tion asserted by P is true if such a single entity

                      exists and otherwise denotes the null entity.

Descriptions are terms and they are the specific form of term that is defined

in the context of all possible positions in atomic-sentences. All other complex

terms are ultimately reducible to definite descriptions. Thus, the precise

definition of the notion of "the class of all x such that P" or, notationally

"{X   P}" as follows:

         ({X   P} = The Y (Class Y & For all X (If For some Z (X Is among Z)

                                                Then (X Is among Y) Iff P))).

This definition together with appropriate axioms (not included here) insures

that L is extensional,  that is that two classes are identical if and only if

they have the same members, and that the well-known class paradoxes are ex-

cluded.

Classes can be given by exhibition:

        ({  a,b,c,...,z  } = {  X   X = a Or X = b Or X = c Or ... Or X = z  }).

Ordered pairs can be defined by:

         (   x  ,  y    = {{  x  },{  x,y  }}).

Relations are then classes of ordered pairs:

         ({  xy   P} = {  z   For some x For some y (  z =    x  ,  y    & P)}).

That is, the relation of x to y such that P is the class of ordered pairs    x

 ,  y    such that P is true. To assert that A bears the relationship "member

of" to B is to assert:

         ( A,B  Is among {  xy   x Is among y  }).

Functions, used in the strict mathematical sense in an IPL approach, are given

by:

         (F  x Y = {  yx   y = Y}).

Thus, the function of x whose value (for the argument x  ) is Y is the relation

of y to x such that  y = Y. Functions are simply special relations where there

is a unique value for each argument. The need to reverse x and y in the defini-

tion will not be discussed here. The mutual refusal of nineteenth century mathe-

maticians and logicians to agree on a standard would generate bad language.

For a variety of reasons it is convenient to use a slightly special notation

for the result of applying a function. Instead of F  (  x  ), L uses:

         (  F  :  x = The y (   y  ,  x    Is among F  )).

If Double = F  x 2  x then Double:3 = 6.

A somewhat similar construct permits the identification of the class of all en-

tities that bear the relation R to some member of a specified class. Thus:

         (  R  ;  x = {  y   For some z

                       (  z Is among x &    y  ,  z    Is among R  )}).

Certain elementary notions of set theory are useful. These are the usual

notions of:

  Union:

         (  x U y = {  z   z Is among x Or z Is among y  }).

  Intersection:

         (  x N y = {  z   z Is among x & z Is among y  }).

  Complement:

         (C x = {  y   Not y Is among x  }).

  Subset:

         (  x In y Iff For all z (If z Is among x Then z Is among y  )).

  Union_over:

         (Un x = {  y   For some z (  z Is among x & y Is among z  )}).

  Converse:

         (Cnv R = {  xy      y  ,  x    Is among R  }).

  Cartesian_product:

         (  x X y = {  zw   z Is among x & w Is among y  }).

A few particular entities need specific definition and notation. These are the:

  Null_entity:

         (W = The x Null x  ).

  Empty_set:

         (0 = {  x   Not x = x }).

  Class_of_individuals:

         (I = {  x   Individual x  }).

  Class_of_elements_(Universal_class):

         (E = {  x   For some y (  x Is among y  )}).

  Class_of_all_functions:

         (Fcn = {  F   For some x For some y

                       (  F In x X y

                        & For all x  ' For all y  ' For all y  ''

                            (If    y  ',  x  '  Is among F

                              &    y  '',  x  '  Is among F

                             Then y  ' = y  ''))}).

  Left_domain_on_an_arbitrary_relation:

         (Dl R = {  x   For some y (   x  ,  y    Is among R  )}).

  Right_domain_on_an_arbitrary_relation:

         (Dr R = {  y   For some x (   x  ,  y    Is among R  )}).

It is known, as noted, that all mathematical constructs can be defined in terms

of sets. This is not explicitly done here because it is tedious. One must

assume it has been displayed so that all the intermediate definitions are, in

fact, axioms. The only constructs explicitly needed for the example are:

         0, 1, 2, ...   The successive natural numbers (yes, zero is

                        the empty set);

         Nn             The class of all natural numbers;

         Nrp            The class of all positive real numbers;

         <, >           The predicates of arithmetical order;

         +, -, *, /     The conventional arethmetic operators;

         K              The cardinality function; i.e., K:  x is the car-

                        dinal number that denotes the number of elements

                        in the class denoted by x;

         Average        The arethmetic mean function; i.e. Average:  F

                        is the arithmetic mean of the values of the

                        function denoted by F, provided these values

                        are real numbers.

In order to conduct discourse about the names of entities, it is necessary to

introduce, as individuals, inscriptions, instances of typographical strings (as

well as their counterparts in computer storage) and classes of inscriptions

that are considered to be equiform (represent the same abstract characters).

The method employed for doing this is characteristic of the modelling technique

expected to be most useful for general conceptual schema and information base.

One begins, as usual, with the primitive-predicates. There are three such primi-

tives required in the present formulation: inscriptionhood  , concatenation

and lexicographic_succession.

Inscriptions are finite linear sequential displays of more or less connected

graphics, glyphs, selected from an alphabet of marks. It is important to note

that each instance of the physical realization of an inscription is different

from every other such physical realization. The second and eleventh glyphs in

this paragraph are different inscriptions although they are members of the same

mark. With these distinctions in mind, the following explanations of the rel-

evant primitive-predicates are:

  Inscription:

         Prd'  x          asserts that the entity denoted by x is an

                        inscription.

  Concatenation:

         Pra'''  xyz      asserts that the entity denoted by z is the

                        inscription resulting from inscribing the en-

                        tity denoted by x followed by the entity

                        denoted by y.

  Lexicographic_succession:

         Prc''  xy        asserts that the entity denoted by y is a

                        glyph and is an element of the mark that lexi-

                        cographically directly succeeds the mark of

                        which the glyph denoted by x is an element.

The last predicate requires a little explanation. It presupposes that the

alphabet has an order. In this case at hand, since the only alphabet understood

is the one detailed in section F.3.2, it will be assumed here that the lexico-

graphical order is the order in which the marks were displayed therein. Thus,

if x denotes "a", then Prc'  xy is true if and only if y denotes "b".

Now, the glyphs can be characterized as those inscriptions that cannot be the

result of concatenation, the first mark as the set of all glyphs that do not

lexicographically succeed anything, the second mark as the set of all glyphs

that lexicographically succeed the glyphs in the first mark, and so on. Now, a

function, the alphabet_function, A, can be defined on, say, the subset of the

natural numbers from 0 to 127 where the value of the function for each element

of its right domain is the mark from IS 646 encoded by the binary representa-

tion of the number that is the argument. That is, A:9 = "A" (as "A" is encoded

in IS 646 by "0001001". Define:

         ((  x Conc y  ) = The z For all x  ' For all y  ' For all z  '

                               (If x  ' Is among x

                                 & y  ' Is among y

                                 & Pra'''  x  '  y  '  z  '

                                Then z  ' Is among z  )).

There is now available a mechanism for spelling within L. "Cat" in L is:

                         ((A:25 Conc A:11) Conc A:39).

While this is not a very memorable notation, it is quite precise and any other

names one whishes to use for the various characters may be introduced by

further definition. It should also be evident at this point how the complete

formal syntax of L can be described in L.

A new primitive-predicate of denoting can be introduced:

         Prd''  xy        asserts that the entity denoted by x denotes

                        (is a name for) the entity denoted by y.

This leads to the function:

         (Denotations = F  x {  y   Prd''  yx  }).

Denotations:  x, then, is the set of all entities taken to be names for x in

the universe of discourse. Obviously a suitable set of axioms must be provided

to assert just what kind of things are names in the particular universe of dis-

course and what rules are applied for their assignment, but any time one en-

counters the expression "(N Is among Denotations:  x  )", one is advised that

whatever N denotes is a name for what x denotes.

The notion of an occurrence, something that happens in the perceived world, is

the basic construct that permits discourse about the physical world in concep-

tual schemata. Occurrences, which are taken as individuals, are identified with

specific points in space and time. Occurrences are regarded as instantaneous

and point-like, distinct from one another and from all other individuals. As

usual, predicates will be introduced as primitives to permit the assertion of

fundamental properties of occurrences and the axioms pertinent to those primi-

tive-predicates will lay down the constraints that establish the semantics of

those properties. The initial propositions one whishes to assert about occur-

rences relate to their location in time and space. In the example universe of

discourse considered here, location in space is not relevant and will not be

examined.

Location in time, however, is fundamental. A single primitive-predicate is

found to be sufficient to introduce time, priority.  Thus:

         ((  X Earlier than Y  ) Iff Pre''  XY  ).

A basic relation can now be defined by:

         (Earlier = {  xy   x Earlier than y  }).

It is also useful to make explicit the converse relation:

         (Later = Cnv Earlier).

The class of all occurrences (and, thus, in a sense the physical universe) is

defined as the class of everything that participates in the relation Earlier:

         (Occurrences = Dl Earlier U Dr Earlier).

It is illustrative to state the axioms pertinant to "Earlier than". They are:

         (Occurrences In I)

         For all x For all y

           (If x Earlier than y Then Not y Earlier than x  ).

         For all x For all y For all z

           (If x Earlier than y & y Earlier than z Then x Earlier than z  ).

         For all x For all y

           (If x Earlier than y

            Then for some z (  x Earlier than z & z Earlier than y  ).

         For all x

           (If x Is among Occurrences Then For some y (  y Earlier than x  )).

         For all x

           (If x Is among Occurrences Then For some y (  x Earlier than y  )).

The meaning of these axioms is quite straightforward. The first asserts that

occurrences are individuals, the second that relation Earlier is asymetric, the

third that it is transitive and the fourth that it is dense. The last two estab-

lish that for any occurrence there is always at least one earlier and one later.

Exhibiting a phenomenon that will be characteristic of IPL models, it is not

the fundamental individual that is of principal interest; rather it is various

sets of them. Thus:

         (Events = {  x   Not x  = 0 & x In Occurrences}).

Events, then, are the non-empty subsets of Occurrences.

Earlier and Later are relations on occurrences. Before and After are the corre-

sponding relations on events:

         (Before = {  xy   x Is among Events

                         & y Is among Events

                         & For all x  ' For all y  '

                             (If x  ' Is among x & y  ' Is among y

                              Then x  ' Earlier than y  ')}).

         (After = Cnv Before).

That is, one event is before another if every occurrence in the first is

earlier than every occurrence in the other.

Each set of occurrences such that no member is earlier than another is an in-

stant and is derived from a function on occurrences to the instants in which

they lie by:

         (Instant = F  x Among Occurrences {  y   y Is among Occurrences

                               & Not (   x  ,  y    Is among Before U After)}).

         (Instants = Dl Instant).

A technical device was introduced in the definition of "Instant". The expres-

sion:

         (F  x Among Y Z  = {  yx   x Is among Y & y = Z  }).

is an exemplar of a plethora of definitions that compact expressions without

adding any real substance. Similar abreviations will be used hereafter without

comment.

Two events are simultaneous if the instants generated by their respective oc-

currences are the same. Thus:

         (Simultaneous = {  xy Among Events   Instant;  x = Instant;  y  }).

With the help of several primitive-predicates, not detailed here, that estab-

lish a particular instant as an origin, another instant a unit of time (say, a

second) away from the origin and a specific instant as half way between two

other instants, it is possible to define a metric for time so that a particular

natural number is assigned to each instant that identifies the number of

seconds that instant is after the origin. A given second, then, becomes the

event that is the union of all instants assigned a particular second number.

The class Seconds, then, becomes a class of events. Exactly the same thing can

be done for Days, Months, Years and non-exhaustive cases such as First day of

month, January, etc. Also required is the function Year number, assigning

natural numbers to consecutive years.

  F.6._EXAMPLE_UNIVERSE_OF_DISCOURSE_DESCRIPTION.

  F.6.1._GRAPHIC_REPRESENTATION.

The pattern of the most important propositions for the universe of discourse as

described in section B.2 of appendix B is as follows:
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        Figure F.4. Proposition pattern for the universe of discourse.

  F.6.2._LANGUAGE_EXAMPLE.

Given the fundamental constructs outlined in section F.5 in order to explicate

a conceptual schema for the universe of discourse described in appendix B, it

is only necessary to provide a specific set of primitive-predicates peculiar to

that universe of discourse, definitions of practically useful constructs and a

set of axioms, the A4 of section F.5. This is done below. Only the numbered

expressions, all closed sentences of L, are actual components of the conceptual

schema. The prose accounting and commentary, of course, is only for the aid of

the reader and has no bearing on the formal conceptual schema and information

base.

      1. For all M For all d

           (  M Permitted to operate on d Iff Prxa''  Md  ).

This primitive-predicate permits the assertion that the manufacturer denoted

by M is given permission to operate by the Registration Authority on the date

denoted by d.

This will be the normal way of introducing primitive-predicates. The primitive

notation for these predicates, "Pr" {lower-case-letter} {prime}, is non-

memorable and it is useful to introduce alternate notation. This was done above

in section F.5 and will be continued here.

      2. (Manufacturers = {  M   For some d (  M Permitted to operate on d  )}).

This definition explicates the class of all manufacturers; that is, in this

example the only entities permitted to operate by the Registration Authority

are manufacturers. Such definitions are characteristic of the IPL approach.

      3. (Manufacturers In I).

This axiom is not strictly speaking necessary. It establishes that manufac-

turers are individuals and, therefore, not classes or the null entity. In more

complex formulations such axioms may well become important.

      4. For all M For all d

           (If M Permitted to operate on d Then d Is among Days).

This axiom is typical for all primitive-predicates. The nature of the various

entities denoted by terms in the relevant atomic-sentence must be specified. In

the case of Prxa'', the first term denotes a manufacturer by definition 2 and

it is axiom 4 that establishes that the second term denotes a day.

      5. (Cnv Denotations N (Manufacturers X Strings) Is among Fcn).

This axiom is also typical. It is the claim that manufacturers have unique

names.

      6. For all M For all d (  M Ceases to operate on d Iff Prxb''  Md  ).

This primitive-predicate permits the assertion that the manufacturer denoted

by M ceases to operate on the day denoted by d.

      7. For all M For all d

           (If M Ceases to operate on d

            Then M Is among Manufacturers & d Is among Days).

This axiom is the counterpart of axiom 4 but must, in this case, also assert

the nature of the entities denoted by the first term.

      8. For all M For all d

           (If M Ceases to operate on d

            Then For some d  ' (  M Permitted to operate on d  '

                                & d  ' Is among Before;{  d  })).

Although not strictly speaking called for in the prose description in appendix

B, this axiom seems implied by the natural language meaning of the word

"cease". It asserts that a manufacturer must have already been permitted to

operate before it can cease to operate.

      9. For all M For all d

           (  M Operating on d Iff For some d  '

                                   (  M Permitted to operate on d  '

                                    & d  ' Is among Before;{  d  })

                                    & Not For some d  ''

                                            (  M Ceases operate on d  ''

                                             & d  ' Is among Before;{  d  ''}

                                             & d  '' Is among Before;{  d  })).

This definition provides the predicate that permits the assertion that the

manufacturer denoted by M is actually operating on the day denoted d. That is,

M has permission to operate before d and has not ceased to operate between its

reception of permission and d.

     10. For all M For all c For all s For all d

           (  M Manufactures csd Iff Prxa''''  Mcsd  ).

This primitive-predicate permits the assertion that the manufacturer denoted

by M completes manufacture of the car denoted by c and assigns it the serial

number denoted by s on the day denoted by d.

     11. For all M For all c For all s For all d

           (If M Manufactures csd

            Then M Is among Manufacturers

               & s Is among Nn

               & d Is among Days).

This axiom is the counterpart of axioms 4 and 7 for the primitive-predicate

introduced in axiom 10. Only three of the four terms require specification for,

in this example, the only things manufactured are cars. This permits:

     12. (Cars = {  c   For some M For some s For some d

                          (  M Manufactures csd  )}).

Thus, the class of all cars is the class of all entities manufactured by some

manufacturer and assigned some serial number on some day.

     13. (Cars In I).

     14. (Manufacturer = {  Mc   For some s For some d

                                 (  M Manufactures csd  )}).

Definition 14 identifies the function that takes a car as an argument and

yields the manufacturer of the car as the value.

     15. (Serial number = {  sc   For some M For some d

                                  (  M Manufactures csd  )}).

This definition does for serial number what definition 14 does for manufac-

turer. It should be noted in passing that an assumption has been made that

"serial number" means some natural number. From appendix B it appears that a

serial number might be a complex number. This is, of course, not essential for

this demonstration.

     16. (Day of manufacture = {  dc   For some s (  M Manufactures csd  )}).

The parallel with 14 and 15 should be evident.

     17. (Manufacturer Is among Fcn).

     18. (Serial number Is among Fcn).

     19. (Day of manufacture Is among Fcn).

These three axioms establish that a car has at most one manufacturer, one

serial number and one day of manufacture. Also needed are:

     20. (Dr Manufacturer = Cars).

     21. (Dr Serial number = Cars).

     22. (Dr Day of manufacture = Cars).

These axioms establish that every car has a manufacturer, serial number and day

of manufacture (and nothing else does).

     23. For all c For all c  ' For all M

           (If M Is among Manufacturers

             & Manufacturer:  c = M

             & Manufacturer:  c  ' = M

             & Serial number:  c = Serial number:  c  '

            Then c = c  ').

This axiom establishes that serial number is unique within manufacturer, i.e.,

two cars with the same manufacturer and serial number are identical. An

alternative formulation of axiom 23 is the equivalent:

    23'. ((Cars X Nn) N (Cnv Serial number) Is among Fcn).

This last possible axiom (deducible from axiom 23 and the rest just as axiom 23

is deducible from axiom 23' and the rest) is displayed to illustrate that there

is no unique set of axioms that serve. It is the totality of deducible sen-

tences that count. Axiom 23' is more compact but less immediately obvious in

content.

     24. For all c For all d (  c Destroyed on d Iff Prxc''  cd  ).

This primitive-predicate permits the assertion that the car denoted by c is

destroyed on the day denoted by d.

     25. For all c (If c Destroyed on d Then c Is among Cars & d Is among Days).

     26. For all c

           (If c Is among Cars

            Then For all d

                   (If c Destroyed on d

                    Then Not Day of manufacture:  c Is among After;{  d  })).

Axiom 26 is not explicitly called for in the prose description of appendix B

but is included by inference form the meanings of the natural language words

"manufacturer" and "destroy". Without it certain peculiar and unintended things

could occur. It simply asserts that a car cannot be manufactured after it is

destroyed.

     27. (Day of destruction = {  dc   (  c Destroyed on d  )}).

Definition 27 is parallel to definitions 14 - 16 and so there is a parallel to

axioms 17 - 19 (but, note, not to axioms 20 - 22 as cars are not required to be

destroyed, ever. However, only cars are destroyed.). Thus:

     28. (Day of destruction Is among Fcn).

     29. (Dr Day of destruction In Cars).

     30. For all m (  m Is a model Iff Prxa'  m  ).

This primitive-predicate permits the assertion that the entity denoted by m is

a car model.

     31. For all m

           (If m Is a model

            Then For some M

                   (  M Is among Manufacturers

                    & m In Cnv Manufacturer;{  M  })).

Axiom 31 asserts that car models are classes of cars, each model being a sub-

class of the cars manufactured by a single manufacturer.

     32. (Models = {  m   m Is a model}).

     33. (Cars In Un Models).

Definition 32 defines the class of all models (a class of classes) and axiom 33

asserts that every car has a model. Also needed is the assertion that a car is

only of one model. Thus:

     34. For all m For all m  '

           (If m Is among Models

             & m  ' Is among Models

             & Not m = m  '

            Then m N m  ' = 0).

     35. (Cnv Denotations N (Models X Strings) Is among Fcn).

     36. For all m For all r (  m Consumes fuel at r Iff Prxd''  mr  ).

This primitive-predicate permits assertion that cars belonging to the model

denoted by m consume fuel at the rate denoted by r. Although the example de-

scription in appendix B identifies the fuel as hydrocarbon and the rate as

measured in litres/100 kilometres, neither of those facts means anything to the

rest of the example. As such, then, they can be assumed understood in the inter-

pretation of the primitive-predicate Prxd''. The situation would be different

and more complicated if other kinds of fuel were also included as possibilities

and other units of measure contemplated.

     37. For all m

           (If m Is a model

            Then For some r

                   (  r Is among Nrp & 4 < r < 25 & m Consumes fuel at r  )).

This axiom asserts that every model consists of cars that consume fuel at some

rate between 4 and 25 (litres/100 kilometres). The next axiom asserts that this

rate is unique for a given model:

     38. For all m Among Models For all r For all r  '

           (If m Consumes fuel at r & m Consumes fuel at r  ' Then r = r  ').

     39. For all G For all d (  G Begins to trade on d Iff Prxe''  Gd  ).

This primitive-predicate permits the assertion that the garage denoted by G

begins to trade cars on the day denoted by d.

     40. For all G For all d (  G Ceases to trade on d Iff Prxf''  Gd  ).

This primitive-predicate permits the assertion that the garage denoted by G

ceases to trade cars on the day denoted by d.

     41. (Garages = {  G   For some d (  G  Begins to trade on d  )}).

     42. For all G For all d (If G Begins to trade on d Then d Is among Days).

     43. For all G For all d

           (If G Ceases to trade on d

            Then G Is among Garages & d Is among Days).

     44. (Garages In I).

     45. (Cnv Denotations N (Garages X Strings) Is among Fcn).

     46. For all G For all d

           (If G Ceases to trade on d

            Then For some d  '

                   (  G Begins to trade on d  '

                    & d  ' Is among Before;{  d  })).

Axioms 41 - 46 are parallels of earlier axioms to assert the fundamental

notions relevant to garages.

     47. For all P (  P Is a person Iff Prxb'  P  ).

This primitive-predicate permits assertion that the entity denoted by P is a

person.

     48. (Persons = {  P   P Is a person}).

     49. (Persons In I).

     50. (Cnv Denotations N (Persons X Strings) Is among Fcn).

     51. For all c For all x For all d

           (  c Owned by x On d Iff Prxa'''  cxd  ).

This primitive-predicate permits the assertion that the car denoted by c is

owned by the entity denoted by x on the day denoted by d.

     52. For all c For all x For all d

           (If c Owned by x On d

            Then c Is among Cars

               & d Is among Days

               & x Is among Manufacturers U Garages U Persons).

Axiom 52 asserts that the owners of cars are manufacturers, garages and

persons. Axiom 53 asserts, on the other hand, that in the event a car is owned

by a manufacturer or a garage, it has only one owner. Thus, the notion of

multiple person owners is admitted by default.

     53. For all c For all x For all d

           (If c Owned by x On d

             & x Is among Manufacturers U Garages

            Then For all y (If c Owned by y On d Then x = y  )).

     54. (Car lifetime = F  c Among Cars

                              (Days N C (Before;{Day of manufacture:  c  }

                                         U After;{Day of destruction:  c  })).

Car lifetime is (by definition) a function on cars whose value for a given car

is the class of days neither before manufacture or after destruction. This

peculiar appearing form of definition is a result of not providing for this

example a full complement of the relationships among time units that would be

defined for a general situation. It is a parallel to not having the graphics

"  <  " and "  >  " available in IS 646.

     55. For all c Among Cars For all d Among Days

           (If d Is among Car lifetime:  c

            Then For some x (  c Owned by x On d  )).

Axiom 55 simply asserts that a car is always owned by somebody during its

lifetime.

     56. For all c Among Cars

           (  c Owned by Manufacturer:  c On Day of manufacture:  c  ).

     57. For all d Among Days (K:{  M   M Operating on d  } < 6).

Axiom 57 asserts that the cardinal number of manufacturers operating on a given

day is not greater than 5. Note that this is different from a claim about the

cardinality of the class of all manufacturers (K:Manufacturers) which is not

specified anywhere. Manufacturers is the class of all manufacturers who have

ever operated or ever will operate.

     58. For all G Among Garages For all d Among Days

           (K:{  M   For some c

                     (  c Owned by G On d & Manufacturer:  c = M  )} < 4).

Axiom 58 asserts the constraint that a given garage can only own cars manufac-

tured by three different manufacturers at any one time.

     59. For all G Among Garages For all d Among Days

           (If For some c (  c Owned by G On d  )

            Then Not (  G Ceases to trade on d  )).

Axiom 59 asserts that a garage cannot cease to trade if it owns cars.

     60. For all c For all x For all d

           (  d Assigned to x On d Iff Prxb'''  cxd  ).

This primitive-predicate permits assertion that the car denoted by c is as-

signed to the entity denoted by x on the day denoted by d. For the sake of this

example, transfer of ownership is assumed to be synonymous with registration to

the new owners.

     61. For all c For all R For all d

           (  c Registered R On d Iff Prxc'''  cRd  ).

This primitive-predicate permits the assertion that the car denoted by c is

given the registration number denoted by R on the day denoted by d.

     62. For all c For all x For all d

           (If c Assigned to x On d

            Then c Is among Cars

               & x Is among Manufacturers U Garages U Persons

               & d Is among Days).

     63. For all c For all R For all d

           (If c Registered R On d

            Then c Is among Cars & R Is among Nn & d Is among Days).

     64. (Initial registration = F  c Among Cars The d

                                  (  c Registered to Manufacturer:  c On d  )).

     65. For all c Among Cars

           (Initial registration:  c Is among Days

                                     N C (Before;{Day of manufacture:  c  })).

Axiom 65 repesents the nearest approximation it is possible to give to the con-

cept "as soon as practicable" which appears in appendix B.

     66. For all c among Cars For some R

           (  c Registered R On Initial registration:  c

            & For all R  ' For all d  '

                (If c Registered R  ' On d  '

                 Then R  ' = R & d  ' = Initial registration:  c  )).

     67. (Registration number =

                        {  Rc   c Registered R On Initial registration:  c  }).

     68. (Cnv Registration number Is among Fcn).

Axiom 66 asserts that the only time a registration number is given to a car

is upon initial registration and that the assignment is unique. Axiom 68 as-

serts that the converse of the function defined by definition 67 (which is a

function by axiom 66) is also a function. Therefore there is a one to one

mapping between registration numbers given and cars.

     69. For all c For all X For all d

           (  c Transferred to X On d Iff For all x Among X

                                          (  c Assigned to x On d  )).

Definition 69 provides a predicate that permits the assertion that ownership of

the car denoted by c is transferred to the members of the class denoted by x on

the day denoted by d. For this definition to function as obviously intended, it

is necessary to insure that "Assigned to" always picks out a single day, the

day of actual transfer. This forces some assumption about the granularity of

permitted transfers. Nothing is said in the discussion in appendix B on this

point. The simplest assumption that does not apparent violence to the example

is to assume that cars can be traded only once on a day and that the previous

owners do own for all of the day of transfer and not thereafter. Obviously this

could be done on a finer grain. One could permit a transfer every microsecond

and nothing of substance would change in the model. If transfer can occur con-

tinuously, however, radical surgery is required.

To accomplish the specification of this is a concept of the next day is neces-

sary. The whole question of time sequences should be defined in general and it

is reasonable to assume that there exists a function on Days whose value for

any day it the next day. Thus, for example:

                 (Next day: 1981 January 1 = 1981 January 2).

The considerations of the paragraphs above are captured in axioms 70 and 71.

     70. For all c For all C For all Y For all d

           (If For all x Among X

                 (  c Owned by x On d & c Transferred to Y on d  )

            Then For all y Among Y (  c Owned by y On Next day:  d  )

               & For all x Among X

                        N C Y Not (  c Owned by x On Next day:  d  )

               & For all y Among Y N C X Not (  c Owned by y On d  )).

     71. For all c For all X For all d

           (If c Transferred to X On d

            Then For some y Not among X (  c Owned by y on d  )

               & For some x Among X Not (  c Owned by x On d  )).

Axiom 71 has the consequence of prohibiting vacuous transfers-transfers from a

particular owner to himself. This seems appropriate.

     72. For all c For all d For all X For all M Among Manufacturers

           (If c Owned by M On d & c Transferred to X on d

            Then For some G Among Garages (  X = {  G  })).

Axiom 72 asserts that manufacturers can transfer a given car to a single garage

only.

     73. For all c For all d For all X For all G Among Garages

           (If c Owned by G On d & c Transferred to X On d

            Then X In Persons N C {0}).

Axiom 73 asserts that garages can only transfer to persons.

     74. For all c For all X For all d

           (If c Transferred to X On d Then X In C Manufacturers).

Axiom 74 asserts that manufacturers cannot be transferees.

     75. For all c For all X For all d

           (If c Transferred to X On d Then d Is among Car lifetime:  c  ).

Axiom 75 asserts that cars can only be transferred during their lifetime.

     76. For all c For all Y (  Y Is year of production of c Iff Prxg''  Yc  ).

This primitive-predicate permits the assertion that year denoted by Y is the

year of production of the car denoted by c as designated by the manufacturer of

the car.

By analogy with Next day, there is the function Next year.

     77. For all c For all Y

           (If Y Is year of production of c

            Then c Is among Cars

               & Y Is among Years

               & Day of manufacture:  c In Y U (Next year:  Y N January)).

     78. (Year of production = {  Yc   Y Is year of production of c  }).

     79. (Year of production Is among Fcn).

     80. For all r For all Y

           (  r Is maximum fuel consumption for Y Iff Prxh''  rY  ).

This primitive-predicate permits the assertion that the rate of fuel

consumption (litres/100 kilometres) denoted by r is that determined by the

Registration Authority as the maximum for the year denoted by Y. Note that

nothing in the statements of appendix B require the Registration Authority to

be rational so the r here can be, say, 3, for some year and by axiom 37 no

manufacturer meets it.

     81. For all Y Among Years For some r Among Nrp

           (  r Is maximum fuel consumption for Y  ).

Axiom 81 asserts that for every year there is such a parameter of maximum fuel

consumption. In this example the Registration Authority goes on for ever. This

sort of situation is not unusual in the kind of model contemplated here. There

is no description of the start-up and termination processes at all. Many concep-

tual schemata will have this property.

     82. For all M For all d (  M Notified on d Iff Prxj''  Md  ).

This primitive-predicate permits the assertion that the manufacturer denoted

by M is notified through the appropriate message from the Registration

Authority on the day denoted by d.

     83. For all M For all d

           (If M Notified on d

            Then M Is among Manufacturers

               & For some Y Among Years For some R

                   (  R Is maximum fuel consumption for Y

                    & d In January N Next year:  Y

                    & Next day:  d In February N Next year:  Y

                    & R < Average:{  rc   c Is among Cnv Manufacturer;{  M  }

                                        & Y = Year of production:  c

                                        & For some m Among Models

                                            (  c Is among m

                                             & m Consumes fuel at r  )})).

This axiom states the explicit rule determining when the Registration Authority

notifies a manufacturer concerning violation of the fuel consumption

regulations.

Except for matters dealing with the actual recording of registrations by the

Registration Authority, two additional axioms complete the description of the

example. Axiom 84 asserts the manufacturers may cease to operate only if they

own no cars and axiom 85 asserts that every car has a year of production. Both

of these axioms could have been introduced earlier but were overlooked in the

initial pass. They are left here, rather than inserted where they could first

be stated to illustrate the point that the order in which the axioms are de-

scribed does not matter in_principle  . All the axioms (including definitions)

are assumed to be present and so it is only a matter of efficiency of search

that suggests an order, a matter of implementation, not design.

     84. For all M Among Manufacturers For all d Among Days

           (If M Ceases to operate on d

            Then Not For some c Among Cars (  c Owned by M On d  )).

     85. (Dr Year of production = Cars).

There are a variety of ways to model real records. The choice made here is

based on the fact that the example claims nothing about the format of the

records, merely that certain information must be there. Thus:

     86. For all R For all c For all d

           (  R Is record of c On d Iff Prxd'''  Rcd  ).

This primitive-predicate permits the assertion that the entity denoted by R is

a record for the Registration Authority of the car denoted by c on the day

denoted by d.

     87. For all R For all c For all d

           (If R Is record of c On d

            Then R In Strings & c Is among Cars & d Is among Days).

     88. For all R For all c For all d

           (If R Is record of c On d

             & d Is among Before;{Initial registration:  c  }

            Then R = 0).

Axiom 88 asserts that the record of a car is empty before the car is initially

registered.

Axiom 89 below is quite complicated to actually state but in essence is quite

simple. It defines what denotations (names of things) must be in the record on

each relevant date and incorporates the requirement that the record may become

empty two years after destruction.

     89. For all R For all c For all d

           (If R Is record of c On d

             & d Is among After;{Initial registration:  c  })

            Then For some R  '

                   (Not R  ' N Denotations:(Registration number:  c  ) = 0

                    & Not R  ' N Denotations:(Manufacturer:  c  ) = 0

                    & Not R  ' N Denotations:(Serial number:  c  ) = 0

                    & Not R  ' N Denotations:The m Among Models

                                                       (  c Is among m  ) = 0

                    & Not R  ' N Denotations:(Year of production:  c  ) = 0

                    & Not R  ' N Denotations:(Initial registration:  c  ) = 0

                    & For all d  ' Among Days N C After;{  d  } For all X

                        (If c Transferred to X On d  '

                         Then For all x Among X

                                (Not R  ' N Denotations:  x = 0

                                 & Not R  ' N Denotations:  d  ' = 0)

                            & (If Day of destruction:  c

                                                  Is Among C After;{  d  }

                               Then Not R  ' N Denotations:

                                                (Day of destruction:  c  ) = 0)

                            & (  R = R  '

                               Or If d Is among Next year:

                                         (Next year:(Day of destruction:  c  ))

                                  Then R = R  ' Or R = 0)))).

Axioms 1 - 89 constitute the A4 axioms for a conceptual schema for the example

universe of discourse detailed in appendix B. For this example there are no A3

axioms and it is presumed that the axioms A1 and A2 (or at least a sufficient

set of A2) are provided ab_initio and available for use in the development of

the A4 set.

  F.7._CHECK_LIST_FOR_THE_CONCEPTUAL_SCHEMA.

The following analysis illustrates whether or not the necessary propositions

about the universe of discourse are captured in the conceptual schema. An I

implies that the assertion is described in the conceptual schema. The

applicable axioms and definitions are mentioned between parentheses.

      CHECK   NECESSARY_PROPOSITIONS

     I    1.  The universe of discourse to be described has to do with the

              registration of cars and is limited to the scope of interest

              of the Registration Authority. (1, 6, 10, 24, 30, 36, 39,

              40, 47, 51, 60, 61, 76, 80, 86. These axioms exhaust the

              primitive predicates peculiar to this conceptual schema and

              information base).

     I    2.  Each car manufacturer has a unique name. (2.)

     I    3.  New car manufacturers can start operation provided they have

              the permission of the Registration Authority. (9.)

     I    4.  The Registration Authority cannot withdraw the permission.

              (This follows because there is no predicate for withdrawal

              of permission.)

     I    5.  At any time not more than five autonomous manufacturers may

              operate. (57.)

     I    6.  Manufacturers may cease to operate, provided they do not own

              cars anymore. (84.)

     I    7.  Each car manufacturer constructs cars in several models.

              (31.)

     I    8.  A car is of a particular model. (34.)

     I    9.  A manufacturer gives a serial number to each car he pro-

              duces. (10.)

     I   10.  This serial number is unique for all cars of one manufac-

              turer. (18, 23.)

     I   11.  A newly produced car is registered by the Registration Auth-

              ority as soon as practicable. (65.)

     I   12.  At this time the car is registered as belonging to the manu-

              facturer which produced it. Therefore the first owner will

              be the manufacturer who produced the car. (64.)

     I   13.  Only the Registration Authority will assign a registration

              number to each registered car. (66.)

     I   14.  This registration number is unique for all cars for all

              time. (66, 68.)

     I   15.  A car has a year of production. (85.)

     I   16.  Only in January may a car be registered as being produced in

              the previous year. (77.)

     I   17.  Cars can be destroyed whereupon the date of destruction is

              recorded. (29, 89.)

     I   18.  The car's history has to be kept until the end of the second

              subsequent calendar year after its destruction. Thereafter

              it is removed from the registered information. (89.)

     I   19.  The name of the car model is unique for all car models for

              all time. (35.)

     I   20.  Any specific car model is constructed by only one manufac-

              turer. (31.)

     I   21.  From time to time new models will be introduced. (Allowed

              since no axiom prevents it.)

     I   22.  All cars of the same car model have the same fuel consump-

              tion. (36.)

     I   23.  This fuel consumption must be known to the Registration

              Authority. (89.)

     I   24.  The fuel consumption of a car will be between 4 and 25

              litres per 100 km. (37.)

     I   25.  The fuel consumption averaged over all individual cars pro-

              duced by a particular manufacturer in a particular year is

              required not to exceed a maximum value which is the same for

              each manufacturer. (83.)

     I   26.  The maximum fuel consumption rate may change from year to

              year. (81.)

     I   27.  At the end of January a message is sent to a manufacturer

              who has failed to meet this requirement in the previous

              year. (83.)

     I   28.  Each garage has a unique name. (45.)

     I   29.  New garages may be established. (Allowed since no axiom

              prevents it.)

     I   30.  Garages may own cars. (52.)

     I   31.  A garage must not have, at any time, cars registered as

              belonging to the garage, from more than three manufacturers

              (which three does not matter, and for a particular garage

              may vary with time). (58.)

     I   32.  An existing garage may be closed down, provided it does not

              have any cars registered to it. (59.)

     I   33.  A particular person may have one or more cars registered as

              belonging to him or her. (Allowed since no axiom prevents

              it.)

     I   34.  It is also possible for two or more people to have one or

              several cars registered as belonging to them jointly and

              simultaneously. (Allowed since no axiom prevents it.)

     I   35.  People have unique names. (50.)

     I   36.  People are only known to the Registration Authority if they

              own or have owned (one or more) cars, which still are known

              to the Registration Authority. (89.)

     I   37.  At any time a car is owned by either

                             - its manufacturer,

                             - a garage,

                             - a person,

                             - a group of persons,

              but not jointly by two or more of these categories. (52, 53.)

     I   38.  Transfer of ownership is registered including the date of

              transfer, the previous owner(s) and the new owner(s). (89.)

     I   39.  Transfer of ownership cannot take place anymore after a

              car's destruction. (75.)

     I   40.  However, transfer of ownership may be recorded after the

              car's destruction, provided the transfer of ownership took

              place before the car's destruction. (89.)

     I   41.  Each manufacturer distributes new cars to several indepen-

              dent garages, each which may receive cars from more than one

              manufacturer. (72.)

     I   42.  Therefore a garage always will be a car's second owner.

              (Deduced from 72, 74, 64.)

     I   43.  Manufacturers do not distribute cars to other manufacturers

              or directly to people. (72.)

     I   44.  Each garage may sell - i.e., cause transfer of registered

              ownership of - new or used cars to people, and may buy -

              i.e., cause transfer of registrered ownership of - cars from

              people. (73.)

     I   45.  Garages are not allowed to sell cars to other garages. (73.)

     I   46.  Garages are not allowed to sell cars to manufacturers. (De-

              duced form 73.)

     I   47.  People can sell cars to other people or buy cars from other

              people. (62, no other axioms to prevent it.)
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