1982-03-15 ISO TC97/SC5/WG3 - CONCEPTUAL SCHEMA G- pn 2

APPENDIX G. EXAMPLES OF DYNAMIC RULE DESCRIPTION.

===

 G.1._INTRODUCTION.

To explain the specification of dynamic rules and constraints, two different,

but mutually convertible kinds of descriptions have been considered (see

chapter 2, section 2.7): the state-oriented and the action-oriented descrip-

tions. They both see the information system as going through a sequence of

states as given by the momentary states of the conceptual schema and informa-

tion base.

 G.2._STATE_ORIENTED_DESCRIPTIONS.

In the state-oriented descriptions, the rules which describe the possible

changes in the information base make reference to sentences before and after

the change. That is, the dynamic rules do not apply to a collection of sen-

tences of just one information base state, but involve collections of sentences

of two successive information base states. On the other hand, two information

base states are sufficient, because all of the relevant history will be

contained in the most recent state, as already stated in section 2.6 of chapter

2. Thus, the rules can be formulated using two predicates, "Old" and "New",

which are applicable to sentences.

Obviously the rules can only specify states, not enforce them. It will in

general be possible to change simultaneously sentences which have the Old or

the New predicate or both, such that the outcome does not violate the rules,

though the change is counter to the intention expressed by those predicates.

Such changes amount to distortion of recorded history. They must be prevented

by an appropriate mechanism which controls simultaneous change of the Old and

the New predicate. The following mechanism could be used:

 - If there are no New sentences, all sentences in the information base may

 simultaneously receive the New predicate (and retain the Old predicate);

 - If each sentence in the information base has both the Old and the New

 predicate, a change request (a complete permissible action) is execut-

 able. Sentences to be deleted merely lose the New predicate. Newly

 inserted sentences receive the New predicate, but not the Old predicate;

 - If the sentences of the information base together contradict the dynamic

 rules, the New predicate may simultaneously be taken from all of them;

 - If the sentences of the information base together conform to the dynamic

 rules, the Old predicate may simultaneously be taken from all of them;

 - The three kinds of changes specified above are the only ones that can be

 made to the information base.

 G.3._STATE-ORIENTED_DESCRIPTION_OF_RULES_IN_THE_EXAMPLE_CONCEPTUAL_SCHEMA.

The following example is based on that of the IPL approaches (see appendix F).

It does not deal with all dynamic requirements as given in appendix B, but dem-

onstrates the principle with only one of them: The uniqueness of registration

numbers through all times.

In accordance with the above mentioned requirement, the example in appendix F,

section F.6 demands that for all days of the universe of discourse the recorded

registration number of a car must be that of its initial registration (axioms

66 and 89). However, so far nothing prevents simultaneous change of the initial

registration number together with a corresponding change of all recorded infor-

mation about the same car. With the predicates Old and New and the mechanism

described in section G.2 dynamic rules for the impossibility to change

registration numbers can be expressed as follows:

 For all R For all R ' For all c For all d

 (If R Is record of c On d

 & Old R

 & Not R = 0

 & R ' Is record of c On d

 & New R '

 Then R N Denotations:(Registration: c) =

 R ' N Denotations:(Registration: c)).

This rule requires that a non-empty record for some car on some day can never

be changed with respect to registration number. Mind that it only prevents

history distortion; it does not provide for consistent history as required for

any one information base state. The latter is taken care of by axioms 66 and 89.

It should be remarked that above we assume the records of section F.6 to be

sentences in the information base. If this is not desirable, we have to intro-

duce sentences about records for which we can apply the same considerations.

 G.4._STATE_INDEPENDENT_RULES_IN_ACTION-ORIENTED_DESCRIPTIONS.

A state independent rule determines the actions that are permissible, irrespec-

tive of the state of the conceptual schema and information base they are ap-

plied to. A kind of state independent rule which seems to be particularly use-

ful is the grouping together of basic actions. This means that for any action

to be permissible according to this rule it must contain all of those basic ac-

tions constituting the rule, or none of them. Thus, if any of the basic actions

involved in the rule occurs in a given permissible action, then all other

remaining constituents of that rule must necessarily also occur. They need not

appear in the same order as specified in the rule, and they may be interspersed

among other basic actions.

For the purpose of this chapter we will use a procedural notation to denote

basic actions, using command statements that possibly contain formal parameters

which have to be replaced by actual occurrences in order to activate the proper

actions. Groupings of basic command statements, possibly with formal para-

meters, express dynamic rules as discussed above and will be denoted as follows:

 together

 bc 1 ,

 bc 2 ,

 .

 bc n

 end.

where bc 1 ... bc n , stand for command statements, possibly with formal para-

meters, that refer to basic actions.

Referring to the first example in chapter 2, section 2.7, the rule may be

expressed by:

together

 INSERT (person WORKS FOR department),

 INSERT (person HAS salary)

end.

Additional examples can be found in section G.6.

 G.5._STATE_DEPENDENT_RULES_IN_ACTION-ORIENTED_DESCRIPTIONS.

A state dependent rule determines which actions may be applied to a given state

of the conceptual schema and information base in order to be permissible. The

set of actions permissible with respect to a state dependent rule is func-

tionally dependent on the current state. This means that, for any action to be

permissible according to such a rule, the current state must satisfy a spec-

ified criterion. Whether the criterion is satisfied or not is dependent on the

performance of previous actions.

A state dependent rule is expressed by a test and a command statement. It means

that the action is only permissible if the test applied to the current state

evaluates to true.

In order to express such rules, we will use the following notation:

 only-if test

 allow command statement.

where test and command statement may possibly have formal parameters.

Referring to the last example in chapter 2, section 2.7, the rule is denoted by:

only-if not (person-1 MARITAL-STATE 'married`)

 and not (person-2 MARITAL-STATE 'married`)

 allow INSERT (person IS MARRIED TO person).

Additional examples can be found in section G.6.

 G.6._ACTION-ORIENTED_DESCRIPTION_OF_RULES_IN_THE_EXAMPLE_CONCEPTUAL_SCHEMA.

The following description of dynamics applied to the example of appendix B may

supplement the descriptions of statics in the approaches given in previous

appendices. In order not to overload notation with trivialities but to concen-

trate on relevant aspects, some obvious rules are omitted, e.g. that a manufac-

turer must exist when he produces cars, that garages and persons must exist

when they sell or buy cars, that these cars must exist, etc. It is hoped that

the example provides enough evidence to make its completion by such rules a

simple (though possibly boring) exercise.

Also omitted is a description of the tests and functions occurring in the tests

that are used in the dynamic rules below. The verbal description of the example

in appendix B should make clear enough what is meant by the formulations given

here. However, a complete list of basic command statements as suggested by ap-

pendix B is given explicitly in order to show how they are used in the dynamic

rules. Please note that not all basic command statements may be used freely;

some of them may only occur together, and others may be used only if certain

conditions are satisfied. The respective rules are stated below as dynamic

rules.

 Command_statements_for_basic_actions.

 INSERT (MANUFACTURER manuf).

 INSERT (PERMISSION-TO-OPERATE manuf).

 INSERT (MANUFACTURER manuf OPERATING).

 INSERT (CAR-MODEL model, MANUF-BY manuf, HAS fuel-cons-spec).

 INSERT (CAR, IS-OF model, HAS serial-no, MADE-BY manuf,

 PRODUCED-IN prod-year).

 INSERT (CAR serial-no manuf HAS reg-no).

 INSERT (CAR reg-no DESTROYED date).

 INSERT (GARAGE garage).

 INSERT (PERSON person).

 INSERT (TRANS-OWN-TO-GARAGE owner, garage, reg-no, date).

 INSERT (TRANS-OWN-TO-PERSON owner, person, reg-no, date).

 INSERT (owner OWNS-CAR reg-no).

 INSERT (FUEL-CONSUMPTION-RATE max-cons, year).

 DELETE (PERMISSION-TO-OPERATE, manuf).

 DELETE (GARAGE garage).

 DELETE (CAR reg-no).

 DELETE (PERSON person).

 DELETE (TRANS-OWN-TO-GARAGE owner, garage, reg-no, date).

 DELETE (TRANS-OWN-TO-PERSON owner, person, reg-no, date).

 DELETE (owner OWNS-CAR reg-no).

 DELETE (owner OWNED-CAR reg-no).

 MODIFY (MANUFACTURER manuf OPERATING)

 TO (MANUFACTURER manuf NON-OPERATING).

 MODIFY (owner OWNS-CAR reg-no) TO (owner OWNED-CAR reg-no).

 Dynamic_rules.

In order to facilitate comparison with the verbal conceptual schema in section

B.2 of appendix B, the dynamic rules are grouped together under the appropriate

headlines used there.

 Manufacturers_of_cars:

 Remark: The static rule "no more than five manufacturers may be in oper-

 ation at any time" may be expressed dynamically in this framework

 by requiring that the basic action "INSERT (MANUFACTURER manuf)"

 may be applied only if the number of manufacturers in the informa-

 tion base is less than five. We ommit here - and in the sequel -

 the action-oriented reformulation of the static rules.

 only-if (PERMISSION-TO-OPERATE manuf)

 allow INSERT (MANUFACTURER manuf OPERATING).

 only-if for all reg-no not (manuf OWNS-CAR reg-no)

 allow MODIFY (MANUFACTURER manuf OPERATING).

 TO (MANUFACTURER manuf NON-OPERATING)

 only-if (MANUFACTURER manuf NON-OPERATING)

 allow DELETE (PERMISSION-TO-OPERATE manuf).

 Cars:

 only-if prod-year = this-year

 or prod-year = previous-year and this-month = 'January`

 allow INSERT (CAR, IS-OF model, HAS serial-no,

 MADE-BY manuf, PRODUCED-IN prod-year).

 together

 INSERT (CAR, IS-OF model, HAS serial-no, MADE-BY manuf,

 PRODUCED-IN prod-year),

 INSERT (CAR serial-no manuf HAS reg-no),

 INSERT (manuf OWNS-CAR reg-no)

 end.

 only-if date(CAR reg-no DESTROYED date) AT LEAST 2 YEARS BEFORE today

 and today = '31 December`

 allow DELETE (CAR reg-no).

 together

 DELETE (CAR reg-no),

for all owner if (owner OWNS-CAR reg-no)

then DELETE (owner OWNS-CAR reg-no),

for all owner if (owner OWNED-CAR reg-no)

then DELETE (owner OWNED-CAR reg-no),

for all garage

 if (TRANS-OWN-TO-GARAGE owner, garage, reg-no, date)

 then DELETE (TRANS-OWN-TO-GARAGE owner, garage,

 reg-no, date),

for all person

 if (TRANS-OWN-TO-PERSON owner, person, reg-no, date)

 then DELETE (TRANS-OWN-TO-PERSON owner, person,

 reg-no, date)

 end.

 Car_models:

 only-if for all manuf not (CAR-MODEL model MANUF-BY manuf)

 allow INSERT (CAR-MODEL model, MANUF-BY manuf, HAS fuel-cons-spec).

 Fuel_consumption:

The first two sentences state static rules. The third sentence describes an

interaction that is not treated in this approach.

 Garages:

 only-if for all reg-no not (garage OWNS-CAR reg-no)

 allow DELETE (GARAGE garage).

 Persons:

 only-if for all reg-no not (person OWNS-CAR reg-no)

 and for all reg-no not (person OWNED-CAR reg-no)

 allow DELETE (PERSON person).

 Car_ownership:

Here no dynamic rules are specified.

 Transfer_of_ownership:

 only-if not (GARAGE owner)

 allow INSERT (TRANS-OWN-TO-GARAGE owner, garage, reg-no, date).

 only-if not (MANUFACTURER owner)

 allow INSERT (TRANS-OWN-TO-PERSON owner, person, reg-no, date).

 together

 INSERT (TRANS-OWN-TO-GARAGE owner, garage, reg-no, date),

